363 research outputs found

    Advanced solar dynamic space power systems perspectives, requirements and technology needs

    Get PDF
    Projected NASA, Civil, Commercial, and Military missions will require space power systems of increased versatility and power levels. The Advanced Solar Dynamic (ASD) Power systems offer the potential for efficient, lightweight, survivable, relatively compact, long-lived space power systems applicable to a wide range of power levels (3 to 300 kWe), and a wide variety of orbits. The successful development of these systems could satisfy the power needs for a wide variety of these projected missions. Thus, the NASA Lewis Research Center has embarked upon an aggressive ASD reserach project under the direction of NASA's Office of Aeronautics and Space Technology (DAST). The project is being implemented through a combination of in-house and contracted efforts. Key elements of this project are missions analysis to determine the power systems requirements, systems analysis to identify the most attractive ASD power systems to meet these requirements, and to guide the technology development efforts, and technology development of key components

    A comparative study of the antimicrobial and antioxidant activities of Inonotus hispidus fruit and their mycelia extracts

    Get PDF
    Inonotus hispidus (Bull.) P. Karst. has been used as traditional medicine for the treatment of dyspepsia, cancer, and diabetes. Numerous studies have confirmed the antimicrobial, antiviral, antioxidant, anti-inflammatory, immunomodulatory, antiproliferative and cytotoxic biological activities of extracts from this species. The purpose of this study was a comparative analysis of the antioxidant and the antimicrobial activities of methanol extracts from fruit and liquid-cultured mycelia. Four compounds (N-butylbenzenesulfonamide, lauramidopropyl betaine, 3,5-di-tert-butyl-4-hydroxybenzaldehyde, and uplandicine), determined by hybrid HRMS, were found only in mycelia culture extracts. Free radical scavenging, measured by DPPH assay on methanol extracts, showed an activity of about 17.2% and 22.1% of Trolox in fruiting bodies and mycelia, respectively. The I. hispidus methanol extracts from fruit and mycelia culture were found to have varying degrees of antibacterial and antifungal effects against the pathogenic microorganisms tested (minimum inhibitory concentration from 0.17 to 2.56 μg mL−1)

    Dietary Supplementation with Probiotics Improves Hematopoiesis in Malnourished Mice

    Get PDF
    BACKGROUND: Lactobacillus rhamnosus CRL1505 (Lr) administered during the repletion of immunocompromised-malnourished mice improves the resistance against intestinal and respiratory infections. This effect is associated with an increase in the number and functionality of immune cells, indicating that Lr could have some influence on myeloid and lymphoid cell production and maturation. OBJECTIVE: This study analyzed the extent of the damage caused by malnutrition on myeloid and lymphoid cell development in the spleen and bone marrow (BM). We also evaluated the impact of immunobiotics on the recovery of hematopoiesis affected in malnourished mice. METHODS: Protein malnourished mice were fed on a balanced conventional diet for 7 or 14 consecutive d with or without supplemental Lr or fermented goat's milk (FGM). Malnourished mice and well-nourished mice were used as controls. Histological and flow cytometry studies were carried out in BM and spleen to study myeloid and lymphoid cells. RESULTS: Malnutrition induced quantitative alterations in spleen B and T cells; however, no alteration was observed in the ability of splenic B cells to produce immunoglobulins after challenge with LPS or CpG. The analysis of BM B cell subsets based on B220, CD24, IgM and IgD expression showed that malnutrition affected B cell development. In addition, BM myeloid cells decreased in malnourished mice. On the contrary, protein deprivation increased BM T cell number. These alterations were reverted with Lr or FGM repletion treatments since normal numbers of BM myeloid, T and B cells were observed in these groups. CONCLUSIONS: Protein malnutrition significantly alters B cell development in BM. The treatment of malnourished mice with L. rhamnosus CRL1505 was able to induce a recovery of B cells that would explain its ability to increase immunity against infections. This work highlights the possibility of using immunobiotics to accelerate the recovery of lymphopoyesis in immunocompromised-malnourished hosts
    • …
    corecore