176 research outputs found

    Use of Saliva for Early Dengue Diagnosis

    Get PDF
    The importance of laboratory diagnosis of dengue cannot be undermined. In recent years, many dengue diagnostic tools have become available for various stages of the disease, but the one limitation is that they require blood as a specimen for testing. In many incidences, phlebotomy in needle-phobic febrile individuals, especially children, can be challenging, and the tendency to forgo a dengue blood test is high. To circumvent this, we decided to work toward a saliva-based assay (antigen-capture anti-DENV IgA ELISA, ACA-ELISA) that has the necessary sensitivity and specificity to detect dengue early. Overall sensitivity of the ACA-ELISA, when tested on saliva collected from dengue-confirmed patients (EDEN study) at three time points, was 70% in the first 3 days after fever onset and 93% between 4 to 8 days after fever onset. In patients with secondary dengue infections, salivary IgA was detected on the first day of fever onset in all the dengue confirmed patients. This demonstrates the utility of saliva in the ACA-ELISA for early dengue diagnostics. This technique is easy to perform, cost effective, and is especially useful in dengue endemic countries

    Fungal Invasion of Normally Non-Phagocytic Host Cells

    Get PDF
    Many fungi that cause invasive disease invade host epithelial cells during mucosal and respiratory infection, and subsequently invade endothelial cells during hematogenous infection. Most fungi invade these normally non-phagocytic host cells by inducing their own uptake. Candida albicans hyphae interact with endothelial cells in vitro by binding to N-cadherin on the endothelial cell surface. This binding induces rearrangement of endothelial cell microfilaments, which results in the endocytosis of the organism. The capsule of Cryptococcus neoformans is composed of glucuronoxylomannan, which binds specifically to brain endothelial cells, and appears to mediate both adherence and induction of endocytosis. The mechanisms by which other fungal pathogens induce their own uptake are largely unknown. Some angioinvasive fungi, such as Aspergillus species and the Zygomycetes, invade endothelial cells from the abluminal surface during the initiation of invasive disease, and subsequently invade the luminal surface of endothelial cells during hematogenous dissemination. Invasion of normally non-phagocytic host cells has different consequences, depending on the type of invading fungus. Aspergillus fumigatus blocks apoptosis of pulmonary epithelial cells, whereas Paracoccidioides brasiliensis induces apoptosis of epithelial cells. This review summarizes the mechanisms by which diverse fungal pathogens invade normally non-phagocytic host cells and discusses gaps in our knowledge that provide opportunities for future research

    Large sub-clonal variation in <i>Phytophthora infestans</i> from recent severe late blight epidemics in India

    Get PDF
    Abstract The population structure of the Phytophthora infestans populations that caused the recent 2013–14 late blight epidemic in eastern India (EI) and northeastern India (NEI) was examined. The data provide new baseline information for populations of P. infestans in India. A migrant European 13_A2 genotype was responsible for the 2013–14 epidemic, replacing the existing populations. Mutations have generated substantial sub-clonal variation with 24 multi-locus genotypes (MLGs) found, of which 19 were unique variants not yet reported elsewhere globally. Samples from West Bengal were the most diverse and grouped alongside MLGs found in Europe, the UK and from neighbouring Bangladesh but were not linked directly to most samples from south India. The pathogen population was broadly more aggressive on potato than on tomato and resistant to the fungicide metalaxyl. Pathogen population diversity was higher in regions around the international borders with Bangladesh and Nepal. Overall, the multiple shared MLGs suggested genetic contributions from UK and Europe in addition to a sub-structure based on the geographical location within India. Our data indicate the need for improved phytosanitary procedures and continuous surveillance to prevent the further introduction of aggressive lineages of P. infestans into the country

    Farnesol-Induced Apoptosis in Candida albicans Is Mediated by Cdr1-p Extrusion and Depletion of Intracellular Glutathione

    Get PDF
    Farnesol is a key derivative in the sterol biosynthesis pathway in eukaryotic cells previously identified as a quorum sensing molecule in the human fungal pathogen Candida albicans. Recently, we demonstrated that above threshold concentrations, farnesol is capable of triggering apoptosis in C. albicans. However, the exact mechanism of farnesol cytotoxicity is not fully elucidated. Lipophilic compounds such as farnesol are known to conjugate with glutathione, an antioxidant crucial for cellular detoxification against damaging compounds. Glutathione conjugates act as substrates for ATP-dependent ABC transporters and are extruded from the cell. To that end, this current study was undertaken to validate the hypothesis that farnesol conjugation with intracellular glutathione coupled with Cdr1p-mediated extrusion of glutathione conjugates, results in total glutathione depletion, oxidative stress and ultimately fungal cell death. The combined findings demonstrated a significant decrease in intracellular glutathione levels concomitant with up-regulation of CDR1 and decreased cell viability. However, addition of exogenous reduced glutathione maintained intracellular glutathione levels and enhanced viability. In contrast, farnesol toxicity was decreased in a mutant lacking CDR1, whereas it was increased in a CDR1-overexpressing strain. Further, gene expression studies demonstrated significant up-regulation of the SOD genes, primary enzymes responsible for defense against oxidative stress, with no changes in expression in CDR1. This is the first study describing the involvement of Cdr1p-mediated glutathione efflux as a mechanism preceding the farnesol-induced apoptotic process in C. albicans. Understanding of the mechanisms underlying farnesol-cytotoxicity in C. albicans may lead to the development of this redox-cycling agent as an alternative antifungal agent

    Transcriptional Analysis of Shewanella oneidensis MR-1 with an Electrode Compared to Fe(III)Citrate or Oxygen as Terminal Electron Acceptor

    Get PDF
    Shewanella oneidensis is a target of extensive research in the fields of bioelectrochemical systems and bioremediation because of its versatile metabolic capabilities, especially with regard to respiration with extracellular electron acceptors. The physiological activity of S. oneidensis to respire at electrodes is of great interest, but the growth conditions in thin-layer biofilms make physiological analyses experimentally challenging. Here, we took a global approach to evaluate physiological activity with an electrode as terminal electron acceptor for the generation of electric current. We performed expression analysis with DNA microarrays to compare the overall gene expression with an electrode to that with soluble iron(III) or oxygen as the electron acceptor and applied new hierarchical model-based statistics for the differential expression analysis. We confirmed the differential expression of many genes that have previously been reported to be involved in electrode respiration, such as the entire mtr operon. We also formulate hypotheses on other possible gene involvements in electrode respiration, for example, a role of ScyA in inter-protein electron transfer and a regulatory role of the cbb3-type cytochrome c oxidase under anaerobic conditions. Further, we hypothesize that electrode respiration imposes a significant stress on S. oneidensis, resulting in higher energetic costs for electrode respiration than for soluble iron(III) respiration, which fosters a higher metabolic turnover to cover energy needs. Our hypotheses now require experimental verification, but this expression analysis provides a fundamental platform for further studies into the molecular mechanisms of S. oneidensis electron transfer and the physiologically special situation of growth on a poised-potential surface

    Candida albicans Infection of Caenorhabditis elegans Induces Antifungal Immune Defenses

    Get PDF
    Candida albicans yeast cells are found in the intestine of most humans, yet this opportunist can invade host tissues and cause life-threatening infections in susceptible individuals. To better understand the host factors that underlie susceptibility to candidiasis, we developed a new model to study antifungal innate immunity. We demonstrate that the yeast form of C. albicans establishes an intestinal infection in Caenorhabditis elegans, whereas heat-killed yeast are avirulent. Genome-wide, transcription-profiling analysis of C. elegans infected with C. albicans yeast showed that exposure to C. albicans stimulated a rapid host response involving 313 genes (124 upregulated and 189 downregulated, ∼1.6% of the genome) many of which encode antimicrobial, secreted or detoxification proteins. Interestingly, the host genes affected by C. albicans exposure overlapped only to a small extent with the distinct transcriptional responses to the pathogenic bacteria Pseudomonas aeruginosa or Staphylococcus aureus, indicating that there is a high degree of immune specificity toward different bacterial species and C. albicans. Furthermore, genes induced by P. aeruginosa and S. aureus were strongly over-represented among the genes downregulated during C. albicans infection, suggesting that in response to fungal pathogens, nematodes selectively repress the transcription of antibacterial immune effectors. A similar phenomenon is well known in the plant immune response, but has not been described previously in metazoans. Finally, 56% of the genes induced by live C. albicans were also upregulated by heat-killed yeast. These data suggest that a large part of the transcriptional response to C. albicans is mediated through “pattern recognition,” an ancient immune surveillance mechanism able to detect conserved microbial molecules (so-called pathogen-associated molecular patterns or PAMPs). This study provides new information on the evolution and regulation of the innate immune response to divergent pathogens and demonstrates that nematodes selectively mount specific antifungal defenses at the expense of antibacterial responses

    Estrogen regulation of apoptosis: how can one hormone stimulate and inhibit?

    Get PDF
    The link between estrogen and the development and proliferation of breast cancer is well documented. Estrogen stimulates growth and inhibits apoptosis through estrogen receptor-mediated mechanisms in many cell types. Interestingly, there is strong evidence that estrogen induces apoptosis in breast cancer and other cell types. Forty years ago, before the development of tamoxifen, high-dose estrogen was used to induce tumor regression of hormone-dependent breast cancer in post-menopausal women. While the mechanisms by which estrogen induces apoptosis were not completely known, recent evidence from our laboratory and others demonstrates the involvement of the extrinsic (Fas/FasL) and the intrinsic (mitochondria) pathways in this process. We discuss the different apoptotic signaling pathways involved in E2 (17β-estradiol)-induced apoptosis, including the intrinsic and extrinsic apoptosis pathways, the NF-κB (nuclear factor-kappa-B)-mediated survival pathway as well as the PI3K (phosphoinositide 3-kinase)/Akt signaling pathway. Breast cancer cells can also be sensitized to estrogen-induced apoptosis through suppression of glutathione by BSO (L-buthionine sulfoximine). This finding has implications for the control of breast cancer with low-dose estrogen and other targeted therapeutic drugs

    Child wasting and concurrent stunting in low- and middle-income countries

    Get PDF
    Sustainable Development Goal 2.2—to end malnutrition by 2030—includes the elimination of child wasting, defined as a weight-for-length z-score that is more than two standard deviations below the median of the World Health Organization standards for child growth 1. Prevailing methods to measure wasting rely on cross-sectional surveys that cannot measure onset, recovery and persistence—key features that inform preventive interventions and estimates of disease burden. Here we analyse 21 longitudinal cohorts and show that wasting is a highly dynamic process of onset and recovery, with incidence peaking between birth and 3 months. Many more children experience an episode of wasting at some point during their first 24 months than prevalent cases at a single point in time suggest. For example, at the age of 24 months, 5.6% of children were wasted, but by the same age (24 months), 29.2% of children had experienced at least one wasting episode and 10.0% had experienced two or more episodes. Children who were wasted before the age of 6 months had a faster recovery and shorter episodes than did children who were wasted at older ages; however, early wasting increased the risk of later growth faltering, including concurrent wasting and stunting (low length-for-age z-score), and thus increased the risk of mortality. In diverse populations with high seasonal rainfall, the population average weight-for-length z-score varied substantially (more than 0.5 z in some cohorts), with the lowest mean z-scores occurring during the rainiest months; this indicates that seasonally targeted interventions could be considered. Our results show the importance of establishing interventions to prevent wasting from birth to the age of 6 months, probably through improved maternal nutrition, to complement current programmes that focus on children aged 6–59 months

    Causes and consequences of child growth faltering in low-resource settings

    Get PDF
    Growth faltering in children (low length for age or low weight for length) during the first 1,000 days of life (from conception to 2 years of age) influences short-term and long-term health and survival 1,2. Interventions such as nutritional supplementation during pregnancy and the postnatal period could help prevent growth faltering, but programmatic action has been insufficient to eliminate the high burden of stunting and wasting in low- and middle-income countries. Identification of age windows and population subgroups on which to focus will benefit future preventive efforts. Here we use a population intervention effects analysis of 33 longitudinal cohorts (83,671 children, 662,763 measurements) and 30 separate exposures to show that improving maternal anthropometry and child condition at birth accounted for population increases in length-for-age z-scores of up to 0.40 and weight-for-length z-scores of up to 0.15 by 24 months of age. Boys had consistently higher risk of all forms of growth faltering than girls. Early postnatal growth faltering predisposed children to subsequent and persistent growth faltering. Children with multiple growth deficits exhibited higher mortality rates from birth to 2 years of age than children without growth deficits (hazard ratios 1.9 to 8.7). The importance of prenatal causes and severe consequences for children who experienced early growth faltering support a focus on pre-conception and pregnancy as a key opportunity for new preventive interventions
    corecore