85 research outputs found
Maternal transmission of Small Ruminant Lentivirus has no epidemiological importance
The relative importance of maternal and horizontal transmission of small ruminant lentivirus (SRLV), the causative organism in maedi-visna, is poorly understood. Review of the literature shows that maternal transmission is inefficient, infecting only about 10–25 % of the lambs of infected ewes. Theory proves that maternal transmission alone cannot achieve the rates of transmission that would be required to start or maintain an outbreak. Maternal and horizontal transmission are additive in effect, and we use modelling to show that maternal transmission does not amplify or enhance prevalence in the presence of horizontal transmission. Taking steps to avoid maternal transmission by rearing lambs without infected maternal colostrum does have a role in producing a clean flock, but has no significance for the control of a disease outbreak if the conditions for horizontal transmission are present. Efforts to prevent disease by reducing the spread of SRLV must be focussed on minimising horizontal transmission
Semantic categorisation of a word supports its phonological integrity in verbal short-term memory
In three immediate serial recall (ISR) experiments we tested the hypothesis that interactive processing between semantics and phonology supports phonological coherence in verbal short-term memory (STM). Participants categorised spoken words in six-item lists as they were presented, according to their semantic or phonological properties, then repeated the items in presentation order (Experiment 1). Despite matched categorisation performance between conditions, semantically-categorised words were correctly recalled more often than phonologically-categorised words. This accuracy advantage in the semantic condition was accompanied by fewer phoneme recombination errors. Comparisons with a no- categorisation ISR baseline (Experiment 2) indicated that, although categorisations were disruptive overall, recombination errors were specifically rarer following semantic cate- gorisation. Experiment 3 replicated the key findings from Experiment 1 and also revealed fewer phonologically-related errors following semantic categorisation compared to a per- ceptual categorisation of high or low pitch. Therefore, augmented activation of semantic representations stabilises the phonological traces of words within verbal short-term memory, in line with the ‘‘semantic binding” hypothesis
Newly-acquired words are more phonologically robust in verbal short-term memory when they have associated semantic representations
Verbal short-term memory (STM) is a crucial cognitive function central to language learning, comprehension and reasoning, yet the processes that underlie this capacity are not fully understood. In particular, although STM primarily draws on a phonological code, interactions between long-term phonological and semantic representations might help to stabilise the phonological trace for words ("semantic binding hypothesis"). This idea was first proposed to explain the frequent phoneme recombination errors made by patients with semantic dementia when recalling words that are no longer fully understood. However, converging evidence in support of semantic binding is scant: it is unusual for studies of healthy participants to examine serial recall at the phoneme level and also it is difficult to separate the contribution of phonological-lexical knowledge from effects of word meaning. We used a new method to disentangle these influences in healthy individuals by training new 'words' with or without associated semantic information. We examined phonological coherence in immediate serial recall (ISR), both immediately and the day after training. Trained items were more likely to be recalled than novel nonwords, confirming the importance of phonological-lexical knowledge, and items with semantic associations were also produced more accurately than those with no meaning, at both time points. For semantically-trained items, there were fewer phoneme ordering and identity errors, and consequently more complete target items were produced in both correct and incorrect list positions. These data show that lexical-semantic knowledge improves the robustness of verbal STM at the sub-item level, even when the effect of phonological familiarity is taken into account
Modelling Marek's Disease Virus (MDV) infection: parameter estimates for mortality rate and infectiousness
Background: Marek's disease virus (MDV) is an economically important oncogenic herpesvirus of poultry. Since the 1960s, increasingly virulent strains have caused continued poultry industry production losses worldwide. To understand the mechanisms of this virulence evolution and to evaluate the epidemiological consequences of putative control strategies, it is imperative to understand how virulence is defined and how this correlates with host mortality and infectiousness during MDV infection. We present a mathematical approach to quantify key epidemiological parameters. Host lifespan, virus latent periods and host viral shedding rates were estimated for unvaccinated and vaccinated birds, infected with one of three MDV strains. The strains had previously been pathotyped to assign virulence scores according to pathogenicity of strains in hosts. Results: Our analyses show that strains of higher virulence have a higher viral shedding rate, and more rapidly kill hosts. Vaccination enhances host life expectancy but does not significantly reduce the shedding rate of the virus. While the primary latent period of the virus does not vary with challenge strain nor vaccine treatment of host, the time until the maximum viral shedding rate is increased with vaccination. Conclusions: Our approach provides the tools necessary for a formal analysis of the evolution of virulence in MDV, and potentially simpler and cheaper approaches to comparing the virulence of MDV strains
tDCS to temporoparietal cortex during familiarisation enhances the subsequent phonological coherence of nonwords in immediate serial recall
Research has shown that direct current stimulation (tDCS) over left temporoparietal cortex - a region implicated in phonological processing - aids new word learning. The locus of this effect remains unclear since (i) experiments have not empirically separated the acquisition of phonological forms from lexical-semantic links and (ii) outcome measures have focused on learnt associations with a referent rather than phonological stability. We tested the hypothesis that left temporoparietal tDCS would strengthen the acquisition of phonological forms, even in the absence of the opportunity to acquire lexical-semantic associations. Participants were familiarised with nonwords paired with (i) photographs of concrete referents or (ii) blurred images where no clear features were visible. Nonword familiarisation proceeded under conditions of anodal tDCS and sham stimulation in different sessions. We examined the impact of these manipulations on the stability of the phonological trace in an immediate serial recall (ISR) task the following day, ensuring that any effects were due to the influence of tDCS on long-term learning and not a direct consequence of short-term changes in neural excitability. We found that only a few exposures to the phonological forms of nonwords were sufficient to enhance nonword ISR overall compared to entirely novel items. Anodal tDCS during familiarisation further enhanced the acquisition of phonological forms, producing a specific reduction in the frequency of phoneme migrations when sequences of nonwords were maintained in verbal short-term memory. More of the phonemes that were recalled were bound together as a whole correct nonword following tDCS. These data show that tDCS to left temporoparietal cortex can facilitate word learning by strengthening the acquisition of long-term phonological forms, irrespective of the availability of a concrete referent, and that the consequences of this learning can be seen beyond the learning task as strengthened phonological coherence in verbal short-term memory
Epidemic Enhancement in Partially Immune Populations
We observe that a pathogen introduce/pmcdata/journal/plosone/2-2007/1/ingest/pmcmod/sgml/pone.0000165.xmld into a population containing individuals with acquired immunity can result in an epidemic longer in duration and/or larger in size than if the pathogen were introduced into a naive population. We call this phenomenon “epidemic enhancement,” and use simple dynamical models to show that it is a realistic scenario within the parameter ranges of many common infectious diseases. This finding implies that repeated pathogen introduction or intermediate levels of vaccine coverage can lead to pathogen persistence in populations where extinction would otherwise be expected
Immune-mediated competition in rodent malaria is most likely caused by induced changes in innate immune clearance of merozoites
Malarial infections are often genetically diverse, leading to competitive interactions between parasites. A quantitative understanding of the competition between strains is essential to understand a wide range of issues, including the evolution of virulence and drug resistance. In this study, we use dynamical-model based Bayesian inference to investigate the cause of competitive suppression of an avirulent clone of Plasmodium chabaudi (AS) by a virulent clone (AJ) in immuno-deficient and competent mice. We test whether competitive suppression is caused by clone-specific differences in one or more of the following processes: adaptive immune clearance of merozoites and parasitised red blood cells (RBCs), background loss of merozoites and parasitised RBCs, RBC age preference, RBC infection rate, burst size, and within-RBC interference. These processes were parameterised in dynamical mathematical models and fitted to experimental data. We found that just one parameter μ, the ratio of background loss rate of merozoites to invasion rate of mature RBCs, needed to be clone-specific to predict the data. Interestingly, μ was found to be the same for both clones in single-clone infections, but different between the clones in mixed infections. The size of this difference was largest in immuno-competent mice and smallest in immuno-deficient mice. This explains why competitive suppression was alleviated in immuno-deficient mice. We found that competitive suppression acts early in infection, even before the day of peak parasitaemia. These results lead us to argue that the innate immune response clearing merozoites is the most likely, but not necessarily the only, mediator of competitive interactions between virulent and avirulent clones. Moreover, in mixed infections we predict there to be an interaction between the clones and the innate immune response which induces changes in the strength of its clearance of merozoites. What this interaction is unknown, but future refinement of the model, challenged with other datasets, may lead to its discovery
Exposure to the antimicrobial peptide LL-37 produces dendritic cells optimized for immunotherapy
Immunization of patients with autologous, ex vivo matured dendritic cell (DC) preparations, in order to prime antitumor T-cell responses, is the focus of intense research. Despite progress and approval of clinical approaches, significant enhancement of these personalized immunotherapies is urgently needed to improve efficacy. We show that immunotherapeutic murine and human DC, generated in the presence of the antimicrobial host defense peptide LL-37, have dramatically enhanced expansion and differentiation of cells with key features of the critical CD103 + /CD141 + DC subsets, including enhanced cross-presentation and co-stimulatory capacity, and upregulation of CCR7 with improved migratory capacity. These LL-37-DC enhanced proliferation, activation and cytokine production by CD8 + (but not CD4 + ) T cells in vitro and in vivo. Critically, tumor antigen-presenting LL-37-DC increased migration of primed, activated CD8 + T cells into established squamous cell carcinomas in mice, and resulted in tumor regression. This advance therefore has the potential to dramatically enhance DC immunotherapy protocols
Laboratory comparison of low-cost particulate matter sensors to measure transient events of pollution
Airborne particulate matter (PM) exposure has been identified as a key environmental risk factor, associated especially with diseases of the respiratory and cardiovascular system and with almost 9 million premature deaths per year. Low-cost optical sensors for PM measurement are desirable for monitoring exposure closer to the personal level and particularly suited for developing spatiotemporally dense city sensor networks. However, questions remain over the accuracy and reliability of the data they produce, particularly regarding the influence of environmental parameters such as humidity and temperature, and with varying PM sources and concentration profiles. In this study, eight units each of five different models of commercially available low-cost optical PM sensors (40 individual sensors in total) were tested under controlled laboratory conditions, against higher-grade instruments for: lower limit of detection, response time, responses to sharp pollution spikes lasting <1 min , and the impact of differing humidity and PM source. All sensors detected the spikes generated with a varied range of performances depending on the model and presenting different sensitivity mainly to sources of pollution and to size distributions with a lesser impact of humidity. The sensitivity to particle size distribution indicates that the sensors may provide additional information to PM mass concentrations. It is concluded that improved performance in field monitoring campaigns, including tracking sources of pollution, could be achieved by using a combination of some of the different models to take advantage of the additional information made available by their differential response
- …