42 research outputs found
The Donbas Dilemma: Examining Russia's Path to Full-Scale Intervention
This article delves into the complex evolution of the Russian-Ukrainian conflict, focusing on the dynamics of the political, economic and institutional situation in the Russian-occupied territories during the Donbas War (2014-2022) and their far-reaching implications for Russia and Ukraine. All attempts to reintegrate those territories with Ukraine through the Minsk Process failed. By 2022, the occupied Donbas territories were de-facto economically, politically, culturally, and institutionally integrated with Russia. As a result, Russia found itself trapped in a perplexing predicament. It could not de-jure integrate the Donbas territories without significant reputational and economic losses. Yet it was equally unable to relinquish them, even as it became clear that they would not help to establish Russian control over Ukraine. As a result, Russia found itself in a situation in which attacking seemed like a viable option to overcome a deadlock
BARDET — BIEDL SYNDROME WITH CONGENITAL KIDNEY MALFORMATION IN A 14-YEAR-OLD GIRL
Aim. To show the variety and severity of the clinical symptoms of a rare hereditary disease — Вardet — Biedle syndrome — in a14-year-old girl. Materials and methods. We carried out a retrospective analysis of anamnestic data, the course of the disease, laboratory and instrumental data, as well as the therapy of a 14-year-old patient with Вardet-Вiedlе syndrome. Results. A 14-year-old patient with hereditary Вardet — Вiedlе syndrome (polydactyly, mental retardation, progressive obesity, pigment retinopathy) was found to have a congenital abnormality of kidney development — hypoplasia and dysplasia of the only right kidney complicated by chronic secondary pyelonephritis with the development of chronic kidney disease. Urine tests revealed leukocyturia, bacteriuria and proteinuria. The echo-signs of diffuse changes in the parenchyma of the right kidney were found during the ultrasound kidney examination. The left kidney was not determined. The conclusion of dynamic renal scintigraphy: the image of the left kidney is not reliably visualized (a sharp decrease in the function or absence of the kidney), the preserved filtration function and a moderate decrease in the excretory function of the right kidney. Intoxication syndrome, leukocyturia, bacteriuria and proteinuria were relieved against the background of antibacterial (Ceftriaxone) and symptomatic therapy. Conclusion. We have described a clinical case of the Вardet — Вiedlе syndrome with congenital kidney malformation (impaired function), but with the normal structure of the internal reproductive organs and sexual development. In the future, due to the development of chronic kidney disease, the patient should receive specialized nephrological care, as well as be observed by endocrinologist due to a high risk of developing type 2 diabetes mellitus
Role of business administration in the process of formation of post-industrial economy
The purpose of the article is to determine the role of business administration in the process of formation of post-industrial economy. The research is based on statistical analysis of time rows. With the help of the method of correlation and regression analysis, the author distinguishes the role of entrepreneurship in the process of formation of post-industrial economy through analysis of dependence between the level of development of business and level of development of post-industrial economy in the countries of the world. For provision of representation of the data, the objects of the research are countries from various geographical and socio-economic regions of the world: Sweden, the USA, Russia, China, and India. The author determined the role of business administration in formation of the foundations of post-industrial economy and offered the corresponding model that allows for maximization of business administration’s contribution into the process of formation of post-industrial economy.peer-reviewe
Safety and Immunogenicity of Combined DNA-Polyethylenimine and Oral Bacterial Idiotypic Vaccine for Patients with B-Cell Non-Hodgkin Lymphoma: A Pilot Study
We report, in brief, the results of a phase I, non-randomized study of idiotypic DNA vaccination in patients with B-cell non-Hodgkin's lymphoma (ISRCTN31090206). The DNA sequence of lymphoma-derived immunoglobulin variable regions was used as a tumor-specific antigen fused to the potato virus X coat protein. A conjugate of plasmid DNA with polyethylenimine was used for the intramuscular injections, followed by a boost with an oral live-attenuated Salmonella vaccine carrying the same plasmid. The patients with a complete or partial response to previous chemotherapy received one or two courses of vaccination, including four injections at monthly intervals. The vaccine was well tolerated, with low-grade adverse events. The T-cell immune responses were assessed by ELISpot, at last vaccine, one week and one month post-vaccination, and were detected in 11/14 (78.6%) of the patients. In cases of progression requiring chemotherapy, or the presence of a positive MRD after the first course of vaccination, the patients underwent a second course of vaccination. At the end point, 6/19 vaccinated patients had disease stabilization, while 13/19 were in complete remission. The overall survival was 100% at follow-up, of a median of 2.3 years
Plant virus particles carrying tumour antigen activate TLR7 and induce high levels of protective antibody
Induction of potent antibody is the goal of many vaccines targeted against infections or cancer. Modern vaccine designs that use virus-like particles (VLP) have shown efficacy for prophylactic vaccination against virus-associated cancer in the clinic. Here we used plant viral particles (PVP), which are structurally analogous to VLP, coupled to a weak idiotypic (Id) tumour antigen, as a conjugate vaccine to induce antibody against a murine B-cell malignancy. The Id-PVP vaccine incorporates a natural adjuvant, the viral ssRNA, which acts via TLR7. It induced potent protective anti-Id antibody responses in an in vivo mouse model, superior to the "gold standard" Id vaccine, with prevalence of the IgG2a isotype. Combination with alum further increased antibody levels and maintained the IgG2a bias. Engagement of TLR7 in vivo was followed by secretion of IFN-? by plasmacytoid dendritic cells and by activation of splenic CD11chi conventional dendritic cells. The latter was apparent from up-regulation of co-stimulatory molecules and from secretion of a wide range of inflammatory cytokines and chemokines including the Th1-governing cytokine IL-12, in keeping with the IgG2a antibody isotype distribution. PVP conjugates are a novel cancer vaccine design, offering an attractive molecular form, similar to VLP, and providing T-cell help. In contrast to VLP, they also incorporate a safe "in-built" ssRNA adjuvant
Targeting the tumor mutanome for personalized vaccination in a TMB low non-small cell lung cancer.
BackgroundCancer is characterized by an accumulation of somatic mutations, of which a significant subset can generate cancer-specific neoepitopes that are recognized by autologous T cells. Such neoepitopes are emerging as important targets for cancer immunotherapy, including personalized cancer vaccination strategies.MethodsWe used whole-exome and RNA sequencing analysis to identify potential neoantigens for a patient with non-small cell lung cancer. Thereafter, we assessed the autologous T-cell reactivity to the candidate neoantigens using a long peptide approach in a cultured interferon gamma ELISpot and tracked the neoantigen-specific T-cells in the tumor by T-cell receptor (TCR) sequencing. In parallel, identified gene variants were incorporated into a Modified Vaccinia Ankara-based vaccine, which was evaluated in the human leucocyte antigen A*0201 transgenic mouse model (HHD).ResultsSequencing revealed a tumor with a low mutational burden: 2219 sequence variants were identified from the primary tumor, of which 23 were expressed in the transcriptome, involving 18 gene products. We could demonstrate spontaneous T-cell responses to 5/18 (28%) mutated gene variants, and further analysis of the TCR repertoire of neoantigen-specific CD4+ and CD8+ T cells revealed TCR clonotypes that were expanded in both blood and tumor tissue. Following vaccination of HHD mice, de novo T-cell responses were generated to 4/18 (22%) mutated gene variants; T cells reactive against two variants were also evident in the autologous setting. Subsequently, we determined the major histocompatibility complex restriction of the T-cell responses and used in silico prediction tools to determine the likely neoepitopes.ConclusionsOur study demonstrates the feasibility of efficiently identifying tumor-specific neoantigens that can be targeted by vaccination in tumors with a low mutational burden, promising successful clinical exploitation, with trials currently underway
Transcriptional analysis highlights three distinct immune profiles of high-risk oral epithelial dysplasia
Oral potentially malignant disorders (OPMD) are precursors of oral squamous cell carcinoma (OSCC), and the presence of oral epithelial dysplasia (OED) in OPMD confers an increased risk of malignant transformation. Emerging evidence has indicated a role for the immune system in OPMD disease progression; however, the underlying immune mechanisms remain elusive. In this study, we used immune signatures established from cancer to delineate the immune profiles of moderate and severe OED, which are considered high-risk OPMD. We demonstrated that moderate and severe OEDs exhibit high lymphocyte infiltration and upregulation of genes involved in both immune surveillance (major histocompatibility complex-I, T cells, B cells and cytolytic activity) and immune suppression (immune checkpoints, T regulatory cells, and tumor-associated macrophages). Notably, we identified three distinct subtypes of moderate and severe OED: immune cytotoxic, non-cytotoxic and non-immune reactive. Active immune surveillance is present in the immune cytotoxic subtype, whereas the non-cytotoxic subtype lacks CD8 immune cytotoxic response. The non-immune reactive subtype showed upregulation of genes involved in the stromal microenvironment and cell cycle. The lack of T cell infiltration and activation in the non-immune reactive subtype is due to the dysregulation of CTNNB1, PTEN and JAK2. This work suggests that moderate and severe OED that harbor the non-cytotoxic or non-immune reactive subtype are likely to progress to cancer. Overall, we showed that distinct immune responses are present in high-risk OPMD, and revealed targetable pathways that could lead to potential new approaches for non-surgical management of OED
NOX4 inhibition potentiates immunotherapy by overcoming cancer-associated fibroblast-mediated CD8 T-cell exclusion from tumours
Determining mechanisms of resistance to PD-1/PD-L1 immune checkpoint immunotherapy is key to developing new treatment strategies. Cancer-associated fibroblasts (CAF) have many tumor-promoting functions and promote immune evasion through multiple mechanisms, but as yet, there are no CAF-specific inhibitors clinically available. Here we generated CAF-rich murine tumor models (TC1, MC38, 4T1) to investigate how CAF influence the immune microenvironment and affect response to different immunotherapy modalities (anti-cancer vaccination; TC1, [HPV E7 DNA vaccine];PD-1, MC38) and found that CAFs broadly suppressed response by specifically excluding CD8+ T-cells from tumors (not CD4+ T-cells or macrophages); CD8+ T-cell exclusion was similarly present in CAF-rich human tumors. RNA sequencing of CD8+ T-cells from CAF-rich murine tumors and immunochemistry analysis of human tumors identified significant upregulation of CTLA-4 in the absence of other exhaustion markers; inhibiting CTLA-4 with a non-depleting antibody overcame the CD8+ T-cell exclusion effect without affecting T-regs. We then examined the potential for CAF targeting, focusing on the ROS-producing enzyme NOX4, which is upregulated by CAF in many human cancers, and compared this to TGF-062;1 inhibition, a key regulator of the CAF phenotype. siRNA knockdown or pharmacological inhibition (GKT137831 [Setanaxib]) of NOX4 'normalized' CAF to a quiescent phenotype and promoted intratumoral CD8+T-cell infiltration, overcoming the exclusion effect; TGF-062;1 inhibition could prevent, but not reverse, CAF differentiation. Finally, NOX4 inhibition restored immunotherapy response in CAF-rich tumors. These findings demonstrate that CAF-mediated immunotherapy resistance can be effectively overcome through NOX4 inhibition, and could improve outcome in a broad range of cancers
ATM Regulates Differentiation of Myofibroblastic Cancer-Associated Fibroblasts and Can Be Targeted to Overcome Immunotherapy Resistance
Myofibroblastic cancer-associated fibroblast (myoCAF)-rich tumors generally contain few T cells and respond poorly to immune-checkpoint blockade. Although myoCAFs are associated with poor outcome in most solid tumors, the molecular mechanisms regulating myoCAF accumulation remain unclear, limiting the potential for therapeutic intervention. Here, we identify ataxia-telangiectasia mutated (ATM) as a central regulator of the myoCAF phenotype. Differentiating myofibroblasts in vitro and myoCAFs cultured ex vivo display activated ATM signaling, and targeting ATM genetically or pharmacologically could suppress and reverse differentiation. ATM activation was regulated by the reactive oxygen species-producing enzyme NOX4, both through DNA damage and increased oxidative stress. Targeting fibroblast ATM in vivo suppressed myoCAF-rich tumor growth, promoted intratumoral CD8 T-cell infiltration, and potentiated the response to anti-PD-1 blockade and antitumor vaccination. This work identifies a novel pathway regulating myoCAF differentiation and provides a rationale for using ATM inhibitors to overcome CAF-mediated immunotherapy resistance.SignificanceATM signaling supports the differentiation of myoCAFs to suppress T-cell infiltration and antitumor immunity, supporting the potential clinical use of ATM inhibitors in combination with checkpoint inhibition in myoCAF-rich, immune-cold tumors