562 research outputs found

    Continuous approximation of binomial lattices

    Get PDF
    A systematic analysis of a continuous version of a binomial lattice, containing a real parameter γ\gamma and covering the Toda field equation as γ→∞\gamma\to\infty, is carried out in the framework of group theory. The symmetry algebra of the equation is derived. Reductions by one-dimensional and two-dimensional subalgebras of the symmetry algebra and their corresponding subgroups, yield notable field equations in lower dimensions whose solutions allow to find exact solutions to the original equation. Some reduced equations turn out to be related to potentials of physical interest, such as the Fermi-Pasta-Ulam and the Killingbeck potentials, and others. An instanton-like approximate solution is also obtained which reproduces the Eguchi-Hanson instanton configuration for γ→∞\gamma\to\infty. Furthermore, the equation under consideration is extended to (n+1)(n+1)--dimensions. A spherically symmetric form of this equation, studied by means of the symmetry approach, provides conformally invariant classes of field equations comprising remarkable special cases. One of these (n=4)(n=4) enables us to establish a connection with the Euclidean Yang-Mills equations, another appears in the context of Differential Geometry in relation to the socalled Yamabe problem. All the properties of the reduced equations are shared by the spherically symmetric generalized field equation.Comment: 30 pages, LaTeX, no figures. Submitted to Annals of Physic

    Spin Dynamics in the Second Subband of a Quasi Two Dimensional System Studied in a Single Barrier Heterostructure by Time Resolved Kerr Rotation

    Full text link
    By biasing a single barrier heterostructure with a 500nm-thick GaAs layer as the absorption layer, the spin dynamics for both of the first and second subband near the AlAs barrier are examined. We find that when simultaneously scanning the photon energy of both the probe and pump beams, a sign reversal of the Kerr rotation (KR) takes place as long as the probe photons break away the first subband and probe the second subband. This novel feature, while stemming from the exchange interaction, has been used to unambiguously distinguish the different spin dynamics (T21∗T_2^{1*} and T22∗T_2^{2*}) for the first and second subbands under the different conditions by their KR signs (negative for 1st1^{st} and positive for 2nd2^{nd}). In the zero magnetic field, by scanning the wavelength towards the short wavelength, T21∗T_2^{1*} decreases in accordance with the D'yakonov-Perel' (DP) spin decoherence mechanism. At 803nm, T22∗T_2^{2*}(450ps) becomes ten times longer than T21∗T_2^{1*}(50ps). However, the value of T22∗T_2^{2*} at 803nm is roughly the same as the value of T21∗T_2^{1*} at 815nm. A new feature has been disclosed at the wavelength of 811nm under the bias of -0.3V (807nm under the bias of -0.6V) that the spin coherence times (T21∗T_2^{1*} and T22∗T_2^{2*}) and the effective g∗g^* factors (∣g∗(E1)∣|g^*(E1)| and ∣g∗(E2)∣|g^*(E2)|) all display a sudden change, due to the "resonant" spin exchange coupling between two spin opposite bands.Comment: 9pages, 3 figure

    Topological gravity on plumbed V-cobordisms

    Full text link
    An ensemble of cosmological models based on generalized BF-theory is constructed where the role of vacuum (zero-level) coupling constants is played by topologically invariant rational intersection forms (cosmological-constant matrices) of 4-dimensional plumbed V-cobordisms which are interpreted as Euclidean spacetime regions. For these regions describing topology changes, the rational and integer intersection matrices are calculated. A relation is found between the hierarchy of certain elements of these matrices and the hierarchy of coupling constants of the universal (low-energy) interactions. PACS numbers: 0420G, 0240, 0460Comment: 29 page

    Multidimensional Toda type systems

    Get PDF
    On the base of Lie algebraic and differential geometry methods, a wide class of multidimensional nonlinear systems is obtained, and the integration scheme for such equations is proposed.Comment: 29 pages, LaTeX fil

    Interaction between Bacteriophage DMS3 and Host CRISPR Region Inhibits Group Behaviors of Pseudomonas aeruginosa

    Get PDF
    Bacteriophage infection has profound effects on bacterial biology. Clustered regular interspaced short palindromic repeats (CRISPRs) and cas (CRISPR-associated) genes are found in most archaea and many bacteria and have been reported to play a role in resistance to bacteriophage infection. We observed that lysogenic infection of Pseudomonas aeruginosa PA14 with bacteriophage DMS3 inhibits biofilm formation and swarming motility, both important bacterial group behaviors. This inhibition requires the CRISPR region in the host. Mutation or deletion of five of the six cas genes and one of the two CRISPRs in this region restored biofilm formation and swarming to DMS3 lysogenized strains. Our observations suggest a role for CRISPR regions in modifying the effects of lysogeny on P. aeruginosa

    Orthogonal Decomposition of Some Affine Lie Algebras in Terms of their Heisenberg Subalgebras

    Full text link
    In the present note we suggest an affinization of a theorem by Kostrikin et.al. about the decomposition of some complex simple Lie algebras G{\cal G} into the algebraic sum of pairwise orthogonal Cartan subalgebras. We point out that the untwisted affine Kac-Moody algebras of types Apm−1A_{p^m-1} (pp prime, m≥1m\geq 1), Br, C2m,Dr, G2, E7, E8B_r, \, C_{2^m}, D_r,\, G_2,\, E_7,\, E_8 can be decomposed into the algebraic sum of pairwise or\-tho\-go\-nal Heisenberg subalgebras. The Apm−1A_{p^m-1} and G2G_2 cases are discussed in great detail. Some possible applications of such decompositions are also discussed.Comment: 16 pages, LaTeX, no figure

    The sl(2n|2n)^(1) Super-Toda Lattices and the Heavenly Equations as Continuum Limit

    Full text link
    The n→∞n\to\infty continuum limit of super-Toda models associated with the affine sl(2n∣2n)(1)sl(2n|2n)^{(1)} (super)algebra series produces (2+1)(2+1)-dimensional integrable equations in the S1×R2{\bf S}^{1}\times {\bf R}^2 spacetimes. The equations of motion of the (super)Toda hierarchies depend not only on the chosen (super)algebras but also on the specific presentation of their Cartan matrices. Four distinct series of integrable hierarchies in relation with symmetric-versus-antisymmetric, null-versus-nonnull presentations of the corresponding Cartan matrices are investigated. In the continuum limit we derive four classes of integrable equations of heavenly type, generalizing the results previously obtained in the literature. The systems are manifestly N=1 supersymmetric and, for specific choices of the Cartan matrix preserving the complex structure, admit a hidden N=2 supersymmetry. The coset reduction of the (super)-heavenly equation to the I×R(2)=(S1/Z2)×R2{\bf I}\times{\bf R}^{(2)}=({\bf S}^{1}/{\bf Z}_2)\times {\bf R}^2 spacetime (with I{\bf I} a line segment) is illustrated. Finally, integrable N=2,4N=2,4 supersymmetrically extended models in (1+1)(1+1) dimensions are constructed through dimensional reduction of the previous systems.Comment: 12 page

    Classical A_n--W-Geometry

    Full text link
    This is a detailed development for the AnA_n case, of our previous article entitled "W-Geometries" to be published in Phys. Lett. It is shown that the AnA_n--W-geometry corresponds to chiral surfaces in CPnCP^n. This is comes out by discussing 1) the extrinsic geometries of chiral surfaces (Frenet-Serret and Gauss-Codazzi equations) 2) the KP coordinates (W-parametrizations) of the target-manifold, and their fermionic (tau-function) description, 3) the intrinsic geometries of the associated chiral surfaces in the Grassmannians, and the associated higher instanton- numbers of W-surfaces. For regular points, the Frenet-Serret equations for CPnCP^n--W-surfaces are shown to give the geometrical meaning of the AnA_n-Toda Lax pair, and of the conformally-reduced WZNW models, and Drinfeld-Sokolov equations. KP coordinates are used to show that W-transformations may be extended as particular diffeomorphisms of the target-space. This leads to higher-dimensional generalizations of the WZNW and DS equations. These are related with the Zakharov- Shabat equations. For singular points, global Pl\"ucker formulae are derived by combining the AnA_n-Toda equations with the Gauss-Bonnet theorem written for each of the associated surfaces.Comment: (60 pages
    • …
    corecore