26 research outputs found

    Deficient recovery response and adaptive feedback potential in dynamic gait stability in unilateral peripheral vestibular disorder patients.

    Get PDF
    Unilateral peripheral vestibular disorder (UPVD) causes deficient locomotor responses to novel environments due to a lack of accurate vestibular sensory information, increasing fall risk. This study aimed to examine recovery response (stability recovery actions) and adaptive feedback potential in dynamic stability of UPVD-patients and healthy control subjects during perturbed walking. 17 UPVD-patients (>6 months since onset) and 17 matched healthy control participants walked on a treadmill and were subjected to eight unexpected perturbations during the swing phase of the right leg. For each perturbation, the margin of stability (MS; state of body's centre of mass in relation to the base of support), was determined at touchdown of the perturbed leg and during the following six recovery steps. The first perturbation caused a reduced MS at touchdown for the perturbed leg compared to baseline, indicating an unstable position, with controls requiring five recovery steps to return to MS baseline and UPVD-patients not returning to baseline level within the analyzed six recovery steps. By the eighth perturbation, control subjects needed two steps, and UPVD-patients required three recovery steps, both thereby improving their recovery response with practice. However, MS at touchdown of the perturbed leg increased only for the controls after repeated perturbations, indicating adaptive feedback-driven locomotor improvements for the controls, but not for the UPVD-patients. We concluded that UPVD-patients have a diminished ability to control dynamic gait stability during unexpected perturbations, increasing their fall risk, and that vestibular dysfunction may inhibit the neuromotor system adapting the reactive motor response to perturbations

    Lifestyle interventions to reduce sedentary behaviour in clinical populations : a systematic review and meta-analysis of different strategies and effects on cardiometabolic health

    No full text
    Cardiometabolic comorbidities are highly prevalent in clinical populations, and have been associated (partly) with their sedentary lifestyle. Although lifestyle interventions targeting sedentary behaviour (SB) have been studied extensively in the general population, the effect of such strategies in clinical populations is not yet clear. Therefore, this systematic review and meta-analysis evaluated the effect of different lifestyle interventions on SB and cardiometabolic health in clinical populations. Randomised controlled trials were collected from five bibliographic databases (PubMed, Embase, Web of Science, The Cochrane Central Register of Controlled Trials, and Scopus). Studies were eligible for inclusion if they evaluated a lifestyle intervention to reduce objectively measured SB, in comparison with a control intervention among persons with a clinical condition. Data were pooled using a random-effects meta-analysis. In total, 7094 studies were identified. Eighteen studies met the inclusion criteria and were categorised in five population groups: overweight/obesity, type 2 diabetes mellitus, cardiovascular, neurological/cognitive and musculoskeletal diseases. Participants reduced their SB by 64 min/day (95%CI: [-91, -38] min/day; p < 0.001), with larger within-group differences of multicomponent behavioural interventions including motivational counselling, self-monitoring, social facilitation and technologies (-89 min/day; 95%CI: [-132, -46] min/day; p < 0.001). Blood glycated haemoglobin concentration (-0.17%; 95% CI: [-0.30, -0.04]%; p = 0.01), fat percentage (-0.66%; 95% CI: [-1.26, -0.06]%, p = 0.03) and waist circumference (-1.52 cm; 95%CI: [-2.84, -0.21] cm; p = 0.02) were significantly reduced in the intervention groups compared to control groups. Behavioural lifestyle interventions reduce SB among clinical populations and improve cardiometabolic risk markers such as waist circumference, fat percentage, and glycaemic control. Sedentary behaviour, Cardiometabolic health, Clinical populations

    Replacing sitting with light-intensity physical activity throughout the day versus 1 bout of vigorous-intensity exercise : similar cardiometabolic health effects in multiple sclerosis : a randomised cross-over study

    No full text
    Purpose Persons with Multiple Sclerosis (PwMS) are physically inactive and spend more time in sedentary behaviours than healthy persons, which increases the risk of developing cardiometabolic diseases. In this randomised crossover study, the cardiometabolic health effects of replacing sitting with light-intensity physical activity (LIPA) and exercise (EX) were investigated. Materials and methods Twenty-eight mildly disabled PwMS performed four 4-day activity regimens in free-living conditions; CONTROL (habitual activity), SIT, LIPA, and EX. Plasma glucose and insulin (oral glucose tolerance test), plasma lipids, inflammation, resting heart rate, blood pressure, body weight, and perceived exertion were measured (clinical-trials.gov: NCT03919058). Results CONTROL: 9.7 h sitting/day, SIT: 13.3 h sitting/day, LIPA: 8.3 h sitting, 4.7 h standing, and 2.7 h light-intensity walking/day, and EX: 11.6 h sitting/day with 1.3 h vigorous-intensity cycling. Compared to SIT, improvements (p < 0.001) after LIPA and EX were found for insulin total area under the curve (-17 019 +/- 5708 and -23 303 +/- 7953 pmol/L*min), insulin sensitivity (Matsuda index +1.8 +/- 0.3 and +1.9 +/- 0.4) and blood lipids (triglycerides: -0.4 +/- 0.1 and -0.5 +/- 0.1 mmol/L; non-high-density lipoprotein cholesterol: -0.3 +/- 0.1 and -0.5 +/- 0.1 mmol/L), with no difference between LIPA and EX. Perceived exertion was higher after EX compared to LIPA (Borg score [6-20]: +2.6 +/- 3.3, p = 0.002). Conclusion Replacing sitting with LIPA throughout the day exerts similar cardiometabolic health effects as a vigorous-intensity exercise in PwMS

    Associations Between Bipedal Stance Stability and Locomotor Stability Following a Trip in Unilateral Vestibulopathy

    Get PDF
    Posturography is used to assess balance in clinical settings, but its relationship to gait stability is unclear. We assessed if dynamic gait stability is associated with standing balance in 12 patients with unilateral vestibulopathy. Participants were unexpectedly tripped during treadmill walking and the change in the margin of stability (MoSchange) and base of support (BoSchange) relative to nonperturbed walking was calculated for the perturbed and first recovery steps. The center of pressure (COP) path during 30-s stance with eyes open and closed, and the distance between the most anterior point of the COP and the anterior BoS boundary during forward leaning (ADist), were assessed using a force plate. Pearson correlations were conducted between the static and dynamic variables. The perturbation caused a large decrease in the BoS, leading to a decrease in MoS. One of 12 correlations was significant (MoSchange at the perturbed step and ADist; r = -.595, P = .041; nonsignificant correlations: .068 ≤ P ≤ .995). The results suggest that different control mechanisms may be involved in stance and gait stability, as a consistent relationship was not found. Therefore, posturography may be of limited use in predicting stability in dynamic situations
    corecore