34 research outputs found

    SImMER: A Pipeline for Reducing and Analyzing Images of Stars

    Full text link
    We present the first public version of SImMER, an open-source Python reduction pipeline for astronomical images of point sources. Current capabilities include dark-subtraction, flat-fielding, sky-subtraction, image registration, FWHM measurement, contrast curve calculation, and table and plot generation. SImMER supports observations taken with the ShARCS camera on the Shane 3-m telescope and the PHARO camera on the Hale 5.1-m telescope. The modular nature of SImMER allows users to extend the pipeline to accommodate additional instruments with relative ease. One of the core functions of the pipeline is its image registration module, which is flexible enough to reduce saturated images and images of similar-brightness, resolved stellar binaries. Furthermore, SImMER can compute contrast curves for reduced images and produce publication-ready plots. The code is developed online at \url{https://github.com/arjunsavel/SImMER} and is both pip- and conda-installable. We develop tutorials and documentation alongside the code and host them online. With SImMER, we aim to provide a community resource for accurate and reliable data reduction and analysis.Comment: 12 pages, 5 figures. Accepted to PAS

    A Closer Look at Exoplanet Occurrence Rates: Considering the Multiplicity of Stars without Detected Planets

    Get PDF
    One core goal of the Kepler mission was to determine the frequency of Earth-like planets that orbit Sun-like stars. Accurately estimating this planet occurrence rate requires both a well-vetted list of planets and a clear understanding of the stars searched for planets. Previous ground-based follow-up observations have, through a variety of methods, sought to improve our knowledge of stars that are known to host planets. Kepler targets without detected planets, however, have not been subjected to the same intensity of follow-up observations. In this paper, we constrain better the stellar multiplicity for stars around which Kepler could have theoretically detected a transiting Earth-sized planet in the habitable zone. We subsequently aim to improve estimates of the exoplanet search completeness—the fraction of exoplanets that were detected by Kepler—with our analysis. By obtaining adaptive optics observations of 71 Kepler target stars from the Shane 3 m telescope at Lick Observatory, we detected 14 candidate stellar companions within 4'' of 13 target stars. Of these 14 candidate stellar companions, we determine through multiple independent methods that 3 are likely to be bound to their corresponding target star. We then assess the impact of our observations on exoplanet occurrence rate calculations, finding an increase in occurrence of 6% (0.9σ) for various estimates of the frequency of Earth-like planets and an increase of 26% (4.5σ) for super-Earths and sub-Neptunes. These occurrence increases are not entirely commensurate with theoretical predictions, though this discrepancy may be due to differences in the treatment of stellar binarity

    Global Chemical Transport on Hot Jupiters: Insights from 2D VULCAN photochemical model

    Full text link
    The atmospheric dynamics of tidally-locked hot Jupiters is dominated by the equatorial winds. Understanding the interaction between global circulation and chemistry is crucial in atmospheric studies and interpreting observations. Two-dimensional (2D) photochemical transport models shed light on how the atmospheric composition depends on circulation. In this paper, we introduce the 2D photochemical transport model, VULCAN 2D, which improves on the pseudo-2D approaches by allowing for non-uniform zonal winds. We extensively validate our VULCAN 2D with analytical solutions and benchmark comparisons. Applications to HD 189733 b and HD 209458 b reveal distinct characteristics in horizontal transport-dominated and vertical mixing-dominated regimes. Motivated by the inferred carbon-rich atmosphere by Giacobbe et al. (2021), we find that HD 209458 b with super-solar carbon-to-oxygen ratio (C/O) exhibits pronounced C2H4 absorption on the morning limb but not on the evening limb, owing to horizontal transport from the nightside. We discuss when a pseudo-2D approach is a valid assumption and its inherent limitations. Finally, we demonstrate the effect of horizontal transport in transmission observations and its impact on the morning-evening limb asymmetry with synthetic spectra, highlighting the need to consider global transport when interpreting exoplanet atmospheres.Comment: 18 pages, 20 figures, submitted to Ap

    A Non-Detection of Iron in the First High-Resolution Emission Study of the Lava Planet 55 Cnc e

    Full text link
    Close-in lava planets represent an extreme example of terrestrial worlds, but their high temperatures may allow us to probe a diversity of crustal compositions. The brightest and most well-studied of these objects is 55 Cancri e, a nearby super-Earth with a remarkably short 17-hour orbit. However, despite numerous studies, debate remains about the existence and composition of its atmosphere. We present upper limits on the atmospheric pressure of 55 Cnc e derived from high-resolution time-series spectra taken with Gemini-N/MAROON-X. Our results are consistent with current crustal evaporation models for this planet which predict a thin ∌\sim 100 mbar atmosphere. We conclude that, if a mineral atmosphere is present on 55 Cnc e, the atmospheric pressure is below 100 mbar.Comment: Accepted to the AJ. 7 pages, 5 figure

    Spitzer phase curve observations and circulation models of the inflated ultra-hot Jupiter WASP-76b

    Get PDF
    The large radii of many hot Jupiters can only be matched by models that have hot interior adiabats, and recent theoretical work has shown that the interior evolution of hot Jupiters has a significant impact on their atmospheric structure. Due to its inflated radius, low gravity, and ultra-hot equilibrium temperature, WASP-76b is an ideal case study for the impact of internal evolution on observable properties. Hot interiors should most strongly affect the non-irradiated side of the planet, and thus full phase curve observations are critical to ascertain the effect of the interior on the atmospheres of hot Jupiters. In this work, we present the first Spitzer phase curve observations of WASP-76b. We find that WASP-76b has an ultra-hot day side and relatively cold nightside with brightness temperatures of 2471±27 K2471 \pm 27~\mathrm{K}/1518±61 K1518 \pm 61~\mathrm{K} at 3.6~\micron and 2699±32 K2699 \pm 32~\mathrm{K}/1259±44 K1259 \pm 44~\mathrm{K} at 4.5~\micron, respectively. These results provide evidence for a dayside thermal inversion. Both channels exhibit small phase offsets of 0.68±0.48∘0.68 \pm 0.48^{\circ} at 3.6~\micron and 0.67±0.2∘0.67 \pm 0.2^{\circ} at 4.5 Όm4.5~\mu\mathrm{m}. We compare our observations to a suite of general circulation models that consider two end-members of interior temperature along with a broad range of frictional drag strengths. Strong frictional drag is necessary to match the small phase offsets and cold nightside temperatures observed. From our suite of cloud-free GCMs, we find that only cases with a cold interior can reproduce the cold nightsides and large phase curve amplitude at 4.5~\micron, hinting that the hot interior adiabat of WASP-76b does not significantly impact its atmospheric dynamics or that clouds blanket its nightside.Comment: 24 pages, 10 Figures, 5 Tables. Accepted to AJ. Co-First Author

    TESS Hunt for Young and Maturing Exoplanets (THYME) VII : Membership, rotation, and lithium in the young cluster Group-X and a new young exoplanet

    Full text link
    The public, all-sky surveys Gaia and TESS provide the ability to identify new young associations and determine their ages. These associations enable study of planetary evolution by providing new opportunities to discover young exoplanets. A young association was recently identified by Tang et al. and F{\"u}rnkranz et al. using astrometry from Gaia (called "Group-X" by the former). In this work, we investigate the age and membership of this association; and we validate the exoplanet TOI 2048 b, which was identified to transit a young, late G dwarf in Group-X using photometry from TESS. We first identified new candidate members of Group-X using Gaia EDR3 data. To infer the age of the association, we measured rotation periods for candidate members using TESS data. The clear color--period sequence indicates that the association is the same age as the 300±50300\pm50 Myr-old NGC 3532. We obtained optical spectra for candidate members that show lithium absorption consistent with this young age. Further, we serendipitously identify a new, small association nearby Group-X, which we call MELANGE-2. Lastly, we statistically validate TOI 2048 b, which is 2.6±0.22.6\pm0.2 \rearth\ radius planet on a 13.8-day orbit around its 300 Myr-old host star.Comment: Revised to correct error in reported planet radius (original: 2.1 Earth radii, corrected: 2.6 Earth radii) and units for planetary radius ratio entries in Table 8. All data tables available open-access with the AJ articl

    Migration and Evolution of giant ExoPlanets (MEEP) I: Nine Newly Confirmed Hot Jupiters from the TESS Mission

    Full text link
    Hot Jupiters were many of the first exoplanets discovered in the 1990s, but in the decades since their discovery, the mysteries surrounding their origins remain. Here, we present nine new hot Jupiters (TOI-1855 b, TOI-2107 b, TOI-2368 b, TOI-3321 b, TOI-3894 b, TOI-3919 b, TOI-4153 b, TOI-5232 b, and TOI-5301 b) discovered by NASA's TESS mission and confirmed using ground-based imaging and spectroscopy. These discoveries are the first in a series of papers named the Migration and Evolution of giant ExoPlanets (MEEP) survey and are part of an ongoing effort to build a complete sample of hot Jupiters orbiting FGK stars, with a limiting Gaia GG-band magnitude of 12.5. This effort aims to use homogeneous detection and analysis techniques to generate a set of precisely measured stellar and planetary properties that is ripe for statistical analysis. The nine planets presented in this work occupy a range of masses (0.55 Jupiter masses (MJ_{\rm{J}}) << MP_{\rm{P}} << 3.88 MJ_{\rm{J}}) and sizes (0.967 Jupiter radii (RJ_{\rm{J}}) << RP_{\rm{P}} << 1.438 RJ_{\rm{J}}) and orbit stars that range in temperature from 5360 K << Teff << 6860 K with Gaia GG-band magnitudes ranging from 11.1 to 12.7. Two of the planets in our sample have detectable orbital eccentricity: TOI-3919 b (e=0.259−0.036+0.033e = 0.259^{+0.033}_{-0.036}) and TOI-5301 b (e=0.33−0.10+0.11e = 0.33^{+0.11}_{-0.10}). These eccentric planets join a growing sample of eccentric hot Jupiters that are consistent with high-eccentricity tidal migration, one of the three most prominent theories explaining hot Jupiter formation and evolution.Comment: 35 pages, 7 tables, and 14 figures. Submitted to AAS Journals on 2023 Dec 2

    A broadband thermal emission spectrum of the ultra-hot Jupiter WASP-18b

    Get PDF
    Close-in giant exoplanets with temperatures greater than 2,000 K (''ultra-hot Jupiters'') have been the subject of extensive efforts to determine their atmospheric properties using thermal emission measurements from the Hubble and Spitzer Space Telescopes. However, previous studies have yielded inconsistent results because the small sizes of the spectral features and the limited information content of the data resulted in high sensitivity to the varying assumptions made in the treatment of instrument systematics and the atmospheric retrieval analysis. Here we present a dayside thermal emission spectrum of the ultra-hot Jupiter WASP-18b obtained with the NIRISS instrument on JWST. The data span 0.85 to 2.85 ÎŒ\mum in wavelength at an average resolving power of 400 and exhibit minimal systematics. The spectrum shows three water emission features (at >>6σ\sigma confidence) and evidence for optical opacity, possibly due to H−^-, TiO, and VO (combined significance of 3.8σ\sigma). Models that fit the data require a thermal inversion, molecular dissociation as predicted by chemical equilibrium, a solar heavy element abundance (''metallicity'', M/H = 1.03−0.51+1.11_{-0.51}^{+1.11} ×\times solar), and a carbon-to-oxygen (C/O) ratio less than unity. The data also yield a dayside brightness temperature map, which shows a peak in temperature near the sub-stellar point that decreases steeply and symmetrically with longitude toward the terminators.Comment: JWST ERS bright star observations. Uploaded to inform JWST Cycle 2 proposals. Manuscript under review. 50 pages, 14 figures, 2 table

    The TESS Grand Unified Hot Jupiter Survey. I. Ten TESS Planets

    Get PDF
    We report the discovery of ten short-period giant planets (TOI-2193A b, TOI-2207 b, TOI-2236 b, TOI-2421 b, TOI-2567 b, TOI-2570 b, TOI-3331 b, TOI-3540A b, TOI-3693 b, TOI-4137 b). All of the planets were identified as planet candidates based on periodic flux dips observed by NASA's Transiting Exoplanet Survey Satellite (TESS). The signals were confirmed to be from transiting planets using ground-based time-series photometry, high angular resolution imaging, and high-resolution spectroscopy coordinated with the TESS Follow-up Observing Program. The ten newly discovered planets orbit relatively bright F and G stars (G<12.5G < 12.5,~TeffT_\mathrm{eff} between 4800 and 6200 K). The planets' orbital periods range from 2 to 10~days, and their masses range from 0.2 to 2.2 Jupiter masses. TOI-2421 b is notable for being a Saturn-mass planet and TOI-2567 b for being a ``sub-Saturn'', with masses of 0.322±0.0730.322\pm 0.073 and 0.195±0.0300.195\pm 0.030 Jupiter masses, respectively. In most cases, we have little information about the orbital eccentricities. Two exceptions are TOI-2207 b, which has an 8-day period and a detectably eccentric orbit (e=0.17±0.05e = 0.17\pm0.05), and TOI-3693 b, a 9-day planet for which we can set an upper limit of e<0.052e < 0.052. The ten planets described here are the first new planets resulting from an effort to use TESS data to unify and expand on the work of previous ground-based transit surveys in order to create a large and statistically useful sample of hot Jupiters.Comment: 44 pages, 15 tables, 21 figures; revised version submitted to A
    corecore