476 research outputs found

    A Deterministic Polynomial--Time Algorithm for Constructing a Multicast Coding Scheme for Linear Deterministic Relay Networks

    Full text link
    We propose a new way to construct a multicast coding scheme for linear deterministic relay networks. Our construction can be regarded as a generalization of the well-known multicast network coding scheme of Jaggi et al. to linear deterministic relay networks and is based on the notion of flow for a unicast session that was introduced by the authors in earlier work. We present randomized and deterministic polynomial--time versions of our algorithm and show that for a network with gg destinations, our deterministic algorithm can achieve the capacity in log(g+1)\left\lceil \log(g+1)\right\rceil uses of the network.Comment: 12 pages, 2 figures, submitted to CISS 201

    Role of Xenopus laevis integrin linked kinase (XILK) during early development.

    Get PDF
    Integrin linked kinase (ILK) is a serine/threonine protein kinase implicated in the phosphatidylinositol 3\u27kinase (PI3\u27K) pathway (Delcommenne et al., 1998). In our study, we isolated and characterized a cDNA clone encoding ILK in Xenopus laevis (X-ILK). The experiments were executed in both embryos and adult tissues to compare the relationship between the ILK expression patterns. Sequence analysis of X-ILK revealed that it is 59% identical to human ILK (HILK) cDNA and 71% identical to human ILK (H-ILK) protein. The well-known domains of ILK (ankyrin domain, Pleckstrin homology domain, kinase domain and paxillin binding site) are preserved among human, mouse, rat and Drosophila. These domains are found in Xenopus ILK. Northern blot analysis showed that a 1.8 Kb transcript is present throughout early embryogenesis. However, there was a significant increase in X-ILK expression at the onset of neurulation. Interestingly, expression studies revealed the presence of only one transcript whereas Western blot analysis revealed the expression of two X-ILK proteins during early development. (Abstract shortened by UMI.) Source: Masters Abstracts International, Volume: 44-03, page: 1295. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    Multiscale Analysis of Turbulence in Horizontal Pipes:Liquid and Particle-Liquid Flow Investigation

    Get PDF
    An experimental–theoretical methodology is developed to investigate the characteristics of turbulence in horizontal particle-liquid pipe flows. Using a discrete wavelet transform, the three-dimensional Lagrangian trajectories of the liquid phase experimentally determined by positron emission particle tracking are decomposed into their deterministic and stochastic sub-trajectories, which are then utilized to construct profiles of local fluctuating velocity components and turbulent kinetic energy. The results for a single-phase flow are independently validated using computational fluid dynamic simulation and the analysis parameters are fine-tuned using direct numerical simulation data from the literature. In a particle-liquid flow, the investigation explores the influence of various factors including particle size, density, and concentration on turbulence intensity. Remarkably, the results demonstrate significant effects of the particle size and density on liquid turbulence. The enhanced understanding gained regarding turbulence intensity helps to advance our fundamental interpretation of the dynamics of particle-liquid flows, thus potentially aiding the rational design of such complex flows and associated equipment

    Multiscale Analysis of Turbulence in Horizontal Pipes:Liquid and Particle-Liquid Flow Investigation

    Get PDF
    An experimental–theoretical methodology is developed to investigate the characteristics of turbulence in horizontal particle-liquid pipe flows. Using a discrete wavelet transform, the three-dimensional Lagrangian trajectories of the liquid phase experimentally determined by positron emission particle tracking are decomposed into their deterministic and stochastic sub-trajectories, which are then utilized to construct profiles of local fluctuating velocity components and turbulent kinetic energy. The results for a single-phase flow are independently validated using computational fluid dynamic simulation and the analysis parameters are fine-tuned using direct numerical simulation data from the literature. In a particle-liquid flow, the investigation explores the influence of various factors including particle size, density, and concentration on turbulence intensity. Remarkably, the results demonstrate significant effects of the particle size and density on liquid turbulence. The enhanced understanding gained regarding turbulence intensity helps to advance our fundamental interpretation of the dynamics of particle-liquid flows, thus potentially aiding the rational design of such complex flows and associated equipment
    corecore