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1. Introduction

Conventional photolithography systems use physical masks which are expensive and difficult
to create and cannot be used forever. Electron Beam Direct Write (EBDW) lithography systems
are a noteworthy alternative which do not need physical masks [Chokshi et al. (1999)]. As
shown in Figure 1 they rely on an array of lithography writers to directly write a mask image
on a photo-resist coated wafer using electron beams. EBDW systems are attractive for a few
reasons: First, their flexibility is advantageous in processes requiring the rapid prototyping
of chips. Second, they are known to reduce fabrication costs [Lin (2009)]. Third, they are
well suited for Next-Generation Lithography (NGL) because they are able to produce circuits
with smaller features than state-of-the-art photolithography systems. Finally, since the mask
images are electronically controlled EBDW systems could be improved by software. Our focus
here will be on this last point.

EBDW is not at this time used in many circuit fabrication processes because it is much
slower than physical mask lithography systems. One current focus of research to address the
throughput problem is massively-parallel electron beam lithography. Some of the research
groups/companies which are developing such systems include KLA-Tencor [Petric et al.
(2009)], IMS [Klein et al. (2009)], and MAPPER [Wieland et al. (2009)].

Chokshi et al. (1999) proposed a maskless lithography system using a bank of 80,000
lithography writers running in parallel at 24 MHz. Dai & Zakhor (2006) pointed out that
this lithography system can achieve the conventional photolithography throughput of one
wafer layer per minute, but layout image data is often several hundred terabits per wafer and
therefore data delivery becomes an important issue. Dai & Zakhor (2006) proposed using a
data delivery system with a lossless image compression component which is illustrated in
Figure 2. They hold compressed layout images in storage disks and transmit the compressed
data to the processor memory board. This kind of EBDW lithography system can achieve
higher throughput if the decoder embedded within the lithography writer can sufficiently
rapidly recover the original images from the compressed files.

Dai (2008) discussed two constraints on this type of system: 1) the compression ratio should
be at least (Transfer rate of Decoder to Writer / Transfer rate of Memory to Decoder), and 2)
the decoding algorithm has to be simple enough to be implemented as a small add-on within
the maskless lithography writer. Therefore the decoder must operate with little memory.
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Fig. 2. Data Delivery for an EBDW Lithography System introduced in Dai & Zakhor (2006)

Dai & Zakhor (2006) reported that the layout images of control logic circuits are often irregular
while the layout images of memory cells frequently contain repeated patterns. Their first
algorithm C4 attempts to handle the varying characteristics of layout images by using context
prediction and finding repeated regions within an image. Liu et al. (2007) later proposed Block
C4, which significantly reduces the encoding complexity.

Based on the framework of Dai & Zakhor (2006) and Liu et al. (2007), Yang & Savari (2010)
improved the compression algorithm via a corner-based representation of the Manhattan
polygons. Their initial algorithm Corner achieves higher compression rates than Block C4
on an irregular circuit. Yang & Savari (2011) recently proposed an improvement Corner2
which simplifies the corner transformation to deal with the irregular parts of the layout
images and also uses a frequent pattern replacement scheme to deal with the repeated parts.
Their experimental results indicate that their approach is often more efficient than the context
prediction method used in C4 and Block C4.

In this paper we extend the work of Yang & Savari (2011) to gray-level images to better
address the issue of handling proximity correction for EBDW systems and show that we obtain
better compression performance and faster encoding/decoding than C4 and Block C4. Hence
our work can be used to solve the data delivery problem of EBDW lithography systems with
smaller features. Moreover, since our decoding speed is faster than C4 and Block C4 we can
improve the throughput of the EBDW lithography system.

2. The compression algorithm

2.1 Overview

Layout image data is commonly cached in GDSII [Rubin (1987)] or OASIS [Chen et al. (2004)]
formats. GDSII and OASIS describe circuit features such as polygons and lines by their corner
points [see Rubin (1987) and Reich et al. (2003)]. GDSII and OASIS formatted data are far more
compact than the uncompressed image of a circuit layer. Therefore GDSII and OASIS initially
seem to be well-suited for this application, but the problem is that EBDW writers operate
directly on pixel bit streams and GDSII and OASIS layout representations must therefore be
converted into layout images before the process begins. The conversion process involves 1)
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Fig. 3. Preparing Layout Images from a Circuit Layout - Rasterizing Process

removing hierarchical structures by replacing all of the copied parts with actual features, 2)
placing the circuit features such as polygons and lines into the correct layers of the circuit, and
3) rasterizing (see Figure 3). This conversion process often lasts hours or even days using a
complex computer system with large memory and cannot be executed by the decoder chip.
The final rasterizing step consists of two parts: a) it produces a binary image on a finer grid,
and b) the binary image is processed in blocks to generate a gray-level image. In the second
step the input binary string is partitioned into m x m pixel blocks. For each block the number
of filled pixels are computed and normalized/quantized to the corresponding gray level.
When this gray-level image is transmitted to the EBDW lithography system the lithography
writer interprets the gray level (or pixel intensity) as an exposure dose which is controlled
by exposing the corresponding region multiple times with an electron beam. Through this
process the printed layout pattern becomes more robust to the electron beam proximity effect
making better quality circuits.

Our approach is motivated by the compactness of the GDSII/OASIS format and uses corner
representation. However, we bypass the complex flattening and rasterizing processes and
instead work with a simple decoding process. Yang & Savari (2011) considered some of these
ideas for binary images which handle the proximity correction by rasterizing the input binary
image on a fine enough grid. Here we will extend these ideas to gray-level images on a coarser
grid.

Figure 4 summarizes the components of the compression algorithm. We begin by applying a
corner transformation to the image like the one in Corner2 [Yang & Savari (2011)]. However,
unlike Corner2 this transformation outputs two streams: a “corner stream” and an “intensity
stream”. The corner stream is a binary stream which locates the polygon corners! and the
intensity stream is a stream of pixel (corner/edge) intensities. Each stream is input to a
separate entropy coding scheme which outputs a compressed bit stream. The corner stream
is compressed using a combination of run length encoding [Golomb (1966)], end-of-block
coding, and arithmetic coding [Moffat et al. (1998)]. The intensity stream is compressed
using end-of-block coding and then compressed by LZ77 [Ziv & Lempel (1977)] and Huffman
coding [Huffman (1952)].

In Section 2.2 we will first describe the corner transform process which outputs the corner
stream and the intensity stream. In Section 2.3 we will describe the final entropy coding
process of the corner stream, and in Section 2.4 we will describe how the intensity value is
compressed.

! This is not actually a corner, but a horizontal /vertical transition point as explained in Subsection 2.2.
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Fig. 5. Required decoder memory (red) to reconstruct a line (blue) from (x1,y1) to (x2,y2).

2.2 Corner transformation

The GDSII/OASIS representation of a structurally flattened single layer describes the layout
polygons by their corner points. This representation requires large decoder memory since
the decoder needs to access a memory block of size (|x; — x| +1) % (Jy1 —y2| + 1) for the
encoder to connect an arbitrary pair of points (x1,y1) and (xp,y2) as in Figure 5. Therefore
this representation is infeasible for our application.

However, the rasterizing process becomes much less complex if the angle of a contour line
is constrained to a small set. Yang & Savari (2010) took advantage of horizontal and vertical
contour lines and decomposed an arbitrary polygon into a collection of Manhattan polygons,
i.e., polygons with right angle corners. This approach is effective because most components
of circuit layouts are produced using CAD tools which design the circuit in a rectilinear space,
and the non-Manhattan parts can also be described by Manhattan components.

In this framework, the decoder scans the image in raster order, i.e., each row in order from left
to right. When the decoder processes a corner it must determine whether it should reconstruct
a horizontal and/or a vertical line. Observe that a corner is either the beginning of a line
going to the right and/or down or the end of a line. Yang & Savari (2010) assigned each
pixel one of five possible values — ‘not corner,” ‘right,” ‘right and down,” “down,” and “stop.’
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Fig. 7. Handling width-1 lines

Yang & Savari (2011) more recently observed that a row (or a column) of the original binary
layout image consists of alternating runs of 1s (fill) and runs of Os (empty). Therefore it is
more efficient to encode pixels where there are transitions from 0 to 1 (or 1 to 0) using symbol
“1” and to encode the other places using symbol “0.” Observe, as in Figure 6(b), that after
applying this encoding in the horizontal direction to a collection of Manhattan polygons that
the output consists of alternating runs of 1s and 0s in the vertical direction. To increase the
compression we repeat this encoding in the other direction to obtain the final corner image.
In the binary corner transformation the final encoded image is binary and the “1”-pixels give
information about the corners of the polygons. To describe the algorithm we begin with a
two-step transformation process and then shorten it to a one-step procedure which requires
less memory during the encoding process and is faster than the two-step transformation
process.

The two-step transformation process begins with a horizontal encoding step in which we
process each row from left to right. For each row, the encoder sets the (imaginary) pixel value
to the left of the leftmost pixel to 0 (not filled). If the value of the current pixel differs from
the preceding one we represent it with a “1” and otherwise with a “0.” The second step
inputs the intermediate encoded result to the vertical encoding process in which each column
is processed from top to bottom. In the specification of the algorithms x denotes the column
index [1, - - -, C] of the image and y represents the row index [1, - - - , R]. Algorithm 1 illustrates
this process.

Line 13 of Algorithm 1 constructs OUT(x,y) = 1 only if TEMP(x,y) # TEMP(x,y — 1). That
is, oUT(x,y) = 1 only if TEMP(x,y) = 1 and TEMP(x,y — 1) = 0 or if TEMP(x,y) = 0 and
TEMP(x,y — 1) = 1. Since TEMP(x,y) = 1 only if IN(x —1,y) # IN(x,y) as in Line 5, we
can shorten the corner transform process to Algorithm 2, which has no need for intermediate
memory since pixel (x,y) is processed in terms of the input pixels (x —1,y), (x,y — 1), and
(x —1,y —1). Algorithm 2 is much faster than Algorithm 1. Finally, Figure 7 illustrates how
the transformation handles width-1 lines.
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Algorithm 1 Transformation : Two-Step Algorithm

Input: Binary layer image TN € {0,1}¢R

Output: Corner image oUT € {0,1}¢R

Intermediate: Temporary image TEMP € {0, 1
{Horizontal Encoding}

1: Initialize TEMP(x,y) = 0, Vx, y.

2: fory=1toRdo

3: forx=1toCdo

4 if IN(x,y) # IN(x — 1,y) then

5: TEMP(x,y) = 1.

6

7

8

}C~R

end if
end for
: end for
{Vertical Encoding}
: Initialize OUT(x,y) = 0, Vx, .
10: forx =1to C do
11:  fory = 1to Rdo

Ne)

12: if TEMP(x,y) # TEMP(x,y — 1) then
13: ouT(x,y) = 1.

14: end if

15:  end for

16: end for

Algorithm 2 Transformation : One-Step Algorithm

Input: Binary layer image TN € {0,1}¢R
Output: Corner image ouT € {0,1}¢R
1: Initialize OUT(x,y) = 0, Vx, y.
2: fory=1toR do
3: forx=1toCdo

4: if IN(x — 1,y —1) = IN(x,y — 1) and IN(x — 1,y) # IN(x,y) then
5: ouT(x,y) =1

6: end if

7: if IN(x —1,y—1) # IN(x,y — 1) and IN(x — 1,) = IN(x,y) then
8: ouT(x,y) =1

9: end if
10:  end for
11: end for

Based on the experimental success in Yang & Savari (2010) and Yang & Savari (2011) for binary
layout images it is natural to expect that a combination of the corner transformation for the
outline of gray-level polygons and a separate representation for the intensity stream would
outperform Block C4. Note that nLv-level gray images for this application have pixel intensity
0 (empty) outside the polygon outline, nLv — 1 (fully filled) inside the polygon outline, and
an element of (0,nLv) along the polygon outline. Therefore we need only consider intensities
along polygon corners and edges. Finally, in order to obtain the polygon outline using the
corner transformation, we first have to map the gray-level image to a binary image. This is
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easily done by mapping all of the nonzero intensities to 1 (fill) and leaving the zero intensities
(not fill) unchanged.

2.3 Entropy coding - corner stream

The corner stream typically contains long runs of zeroes and is therefore well-suited to
compression algorithms like run length encoding [Golomb (1966)] and end-of-block (EOB)
coding. Because the corner transformed image is a sparse binary image, if read in raster order
(as we read) the string would consists of ones and runs of zeroes. During the compression
process, the transitional corners (ones) of the transformed image are written unchanged, but
each run of zeroes is described by its run length via an M-ary representation which we next
describe. Define the new symbols “2”, “3”, - - -, “M+1" to respectively represent the base-M
symbols “Op;”, “Ip1”, - -+, “(M — 1) ”. For example, if the transformed stream was “1 00000
00000 1 00000 0000 1 00000 00000 000” and M = 3, then the encoding of the stream is “1 323
1 322 1 333” because the run length are 10 (=1013), 9 (=1003), and 13 (=1113), and 2/3/4 to
respectively represent 03/13/23.

We find that the addition of EOB coding helps represent the corner stream more efficiently.
When the polygons are aligned and start/end at the same rows of the image the resulting runs
of zeroes could be longer than a multiple of the row width. Although this could be handled by
choosing M sufficiently large the memory requirements for the encoding and decoding of the
final M-ary representation via arithmetic coding [Moffat et al. (1998)] for further compression
requires a choice of M as small as possible in our restricted decoder memory setting.

We observe that it is effective to divide each line into k blocks of length L, and we define a new
EOB symbol “X”. If a run of zeroes appears at the end of a block we represent that run using
an end-of-block symbol X instead of an M-ary representation. Hence the encoding for a line of
zeroes is k X’s instead of approximately log (kL) symbols. For the previous example, if M=2,
k =5, and L = 7, then the transformed stream “1000000 0000100 0000000 1000000 0000000” is
described as "1X 3221X X 1X X," where 2/3 (=0, /1) is used for the binary representations of
runs of zeroes.

We find that EOB coding results in long runs of “X”s and it is useful to employ an N-ary run
length encoding to these runs. For the previous example,if M = N =2,k =5,and L =7,
then the next description of the string is “14 3221 51 5,” where 2/3 (or 4/5) handles the binary
representation of runs of zeroes (or “X”s).

Finally, we compress the preceding stream using the version of arithmetic coding offered by
Witten et al. (1987), and the decoder in this case requires four bytes per alphabet symbol. Since
we used M + N + 1 symbols?, 4(M + N + 1) bytes were used for arithmetic decoding.

2.4 Entropy coding - intensity stream

The corner stream contains no intensity information. Since we are applying row-by-row
decompression (from left to right), the intensity values have to be given in that order. The
intensity values that we require are for corner pixels and pixels on the edges. As we have
mentioned earlier in Section 2.2, the pixels outside the polygons will have 0 intensity (empty)
and pixels inside the polygon boundaries will have nLv — 1 intensity (fully filled).

To obtain better prediction we could apply linear prediction along the neighboring pixels as
is done in Block C4. However, this approach requires the full information of the previous row
which translates to decoder memory. Therefore we instead apply EOB encoding to the pixels
corresponding to horizontal /vertical edges because the pixel intensity along an edge seldom

2 M symbols are used for runs of zeroes, N symbols are used for runs of “X”s, and 1 is used for the
transitional corners.

www.intechopen.com



102 Recent Advances in Nanofabrication Techniques and Applications

changes unless oblique lines are used. We encode the intensity stream as in Algorithm 3. Note
that in the algorithm p is the length of the intensity stream which is determined at the end of
the encoding process.

Algorithm 3 Intensity Stream Encoding

Input: Gray layer image IN € {0,--- ,nLyv — 1}¢R
Input: Binary layer image BIN € {0,1}¢R
Output: Intensity stream OUT € {0, - - - nLv — 1}°
1: Initialize p = 0.
2: fory=1toR do
3: forx=1toCdo
4 if (x,y) is a corner pixel then
5 p=p+1 0UT(p) = IN(x,y).
6: else if (x, y) is a horizontal edge pixel with corners at (x — 1,y) and (x + «,y) then
7 if IN(7, ) has the same value for i € [x, x + «) then
8 p=p+10UT(p) = IN(x,y).
9: p=p+1,0UT(p) =e.
10: x=x+a—1

11: else

12: fori=xtox+a—1do

13: p=p+1,0UT(p) = IN(i,v)

14: end for

15: X =1

16: end if

17: else if (x,y) is a vertical edge pixel with corners at (x,y — 1) and (x,y + ) then
18: if IN(x, j) has the same value for j € [y,y + B) then
19: p=p+10UT(p) = IN(x,y).

20: p=p+10UT(p) =e.

21: forj=ytoy+p—1do

22: IN(x,j) =0

23: end for

24: else

25: p=p+10UT(p) = IN(x,y)

26: end if

27: else if IN(x,y) > 0 and (x,y) is a vertical edge pixel then
28: p=p+10UT(p) = IN(x,y).

29: end if

30:  end for

31: end for

If the current pixel corresponds to a corner (Lines 4-5), the intensity is represented as is. If
the current pixel corresponds to a horizontal edge pixel (Lines 6-16) which starts from the left
pixel, check the run of that intensity. If the horizontal edge pixel has constant pixel intensity
throughout the entire edge, represent the intensity value followed by an end symbol € and
skip to the ending corner pixel (Lines 7-10). Otherwise, write the entire edge intensity as is
(Lines 11-15). Similarly, if the current pixel corresponds to a vertical edge (Lines 17-29) which
starts from the upper pixel determine whether or not the pixel intensities are fixed throughout
the vertical edge. If they are constant then represent the intensity value followed by the end
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symbol € (Lines 18-20) and reset the intensity values for the following rows (Lines 21-23)
so that they are not processed in Lines 27-29. Otherwise, write the intensity value as is and
proceed (Lines 24-26). Finally, the remaining vertical edge pixel intensities are written in Lines
27-29.

After the entire intensity stream has been processed, compress the output stream using LZ77
and Huffman coding. The LZ77 algorithm by Ziv & Lempel (1977) compresses the stream by
finding matches from the previously processed data. When a pattern is repeated within the
search region, it could be encoded using a short codeword. Huffman coding is used at the end
of LZ77 to represent the LZ77 stream more efficiently. The combination of LZ77 and Huffman
coding is widely used in a number of compression algorithms such as gzip. We used zlib [zlib
(2010)] to implement it. The compression rates depend on the size of the LZ77 search region
and the dictionary for the Huffman code. Because of the decoder memory restrictions we
chose an encoder needing only 2,048 bytes of memory for the dictionary. 2,048 bytes is slightly
less than the memory used to describe an entire row of our benchmark circuit. However, since

we were applying this only to the intensity stream we were able to match more rows than Block
C4.

3. Decoder

The decoder consists of an intensity stream decoder and a corner stream decoder as in Figure
8. The intensity stream decoder is actually an entropy decoder which can be decomposed into
a Huffman decoder and an LZ77 decoder. The corner stream decoder consists of an entropy
decoder which consists of an arithmetic decoder, a run length decoder, an end-of-block
decoder, and a corner transform decoder which reconstructs the polygons from the entropy
decoder output. The corner transform decoder utilizes the output of corner stream entropy
decoder to reconstruct the polygon outlines and uses the output of the intensity stream
decoder to reconstruct the polygon pixel intensity.

The entire process works on a row-by-row fashion. Since each part of the decoding
procedure (arithmetic decoding, run length decoding, end-of-block decoding, inverse
corner transformation, LZ77 decoding, and Huffman decoding) is simple and works with
restricted decoder memory, the entire decoder can be implemented in hardware. Note
that the most complex part will be the arithmetic decoder which is widely implemented in
microcircuits [Peon et al. (1997)], and the other parts are comprised of simple branch, copy,
and computation operations as we will see in the following subsection.

3.1 Intensity stream decoder

Decompressing the intensity stream is straightforward. We apply LZ77 and Huffman
decoding to obtain the e-coded intensity stream. As we have mentioned in Section 2.4, the
decoder requires 2,048 bytes of memory to decode the LZ77 and Huffman codes. The e-coded
intensity stream is passed on to the corner transform decoder for the final reconstruction.
Note that the decoder does not decompress the entire compressed intensity stream at once
but rather decompresses some number of e-coded intensity symbols at the request of the
corner transform decoder. The detailed decompression of the e-coded intensity stream will
be discussed at the end of the next subsection.

3.2 Corner stream decoder - corner transform decoder

As we have mentioned earlier, the corner stream decoder consists of an entropy decoder and a
corner transform decoder. The entropy decoder reverses the procedure of the entropy encoder
of Section 2.3. It first reconstructs the run length and end-of-block encoded stream using the
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Fig. 8. Decoder Overview: Note that the decompressed corner stream is input into the image
reconstructor in a row-by-row fashion and the intensity stream is actually e-coded as in
Section 2.4.

arithmetic decoder. Then, depending on the symbol, runs of zeroes (symbols Oy, - - -, (M —
1)nm), runs of EOBs (symbols Oy, - - - , (N — 1)), or the corners (symbol 1) are reconstructed.
Finally, the output of the entropy decoder is a binary corner image. In this section we will
focus on the operation of the corner transform decoder and why it can run in a row-by-row
fashion. This feature makes our approach well-suited to the restricted memory available to an
EBDW writer. In our corner transform decoder we use a row buffer BUFF to hold the status
of the previous (decoded) row. It stores a binary representation of the status of each pixel and
therefore consumes width bits of memory. “0” denotes ‘no transition” while “1” denotes the
‘transition” which delineates the starting/ending point of a vertical line. Moreover, since we
need the polygon boundaries - corners and horizontal /vertical edge pixels - we use another
row buffer CNR to hold the boundary status of the previous row. This also requires width bits
of memory.

Since the algorithm is long, we have split its description into two parts, namely Algorithms 4
and 5. The input to the algorithm is the corner image, and the algorithm outputs the binary
layer image and the corner map which shows whether a pixel in the binary layer image is
outside all polygons (O), inside a polygon boundary (I), a corner (C), a horizontal edge pixel
(H), or a vertical edge pixel (V) which will be used to reconstruct the pixel intensity along
with the intensity stream decoder.

The first part of the algorithm, illustrated in Algorithm 4, shows how the buffers are used
to pass previous row information to the current row so that the decoding process could be
applied in a row-by-row fashion. Lines 5-7 process the binary image buffer BUFF. If the
buffer is filled then the corresponding pixel is part of a vertical edge and it is filled. Lines 8-15
process the corner map buffer CNR. If the corresponding CNR pixel does not form a run, then
the corresponding pixel above it was a vertical edge pixel (Line 10). The starting and ending
points of the runs of 1s are interpreted as the corners (Line 12) and the other pixels in between
are translated as horizontal edge pixels (Line 14).
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Algorithm 4 Inverse Corner Transformation - Part I
}C ‘R

Input: Corner image IN € {0,1
Output: Binary layer image BIN € {0,1}¢ R
Output: Corner map ouT € {O,1,C,H,V}CR
Intermediate: Buffer for image layer BUFF € {0,1}R
Intermediate: Buffer for corner map CNR € {0, 1}R
1: Initialize BUFF(x) = CNR(x) = 0, Vx.
2: Initialize BIN(x,y) = 0 and oUT(x,y) = O, Vx, y.
3: fory =1to R do

4: forx=1toCdo

5: if BUFF(x) = 1 then

6: BIN(x,y) =1

7: end if

8: if CNR(x) = 1 then

9: if CNR(x — 1) = 0 and CNR(x + 1) = 0 then
10: ouT(x,y—1)=V.
11: else if CNR(x —1) = 0 or CNR(x + 1) = 0 then
12: outr(x,y—1) =C.
13: else
14: ouT(x,y —1) = H.

15: end if

16: end if

17:  end for

18: end for

The second part of the algorithm is shown in Algorithm 5. Note that line 18 of Algorithm 4
and line 1 of Algorithm 5 should be removed when they are implemented; we inserted them
to make the loops complete in each part. Lines 5-22 handle the processing of a transitional
corner. If BUFF(x) = 0, then the transitional corner starts (or ends) a new horizontal edge at
row y. Since the entire algorithm is designed to output the result of the previous row y — 1,
we store that horizontal edge in CNR to process it during Algorithm 4. If instead BUFF(x) = 1,
then the transitional corner starts (or ends) the removal of the pre-existing horizontal edge
from the buffer; i.e., the corresponding horizontal edge on the previous row was actually the
horizontal boundary.

Similarly, lines 23-33 determine whether the corresponding empty corner pixel is a vertical
edge pixel or an interior pixel of a polygon. Finally, note that the output OUT is always
processed as a function of row y — 1, the data that is stored in BUFF and CNR, and row y
of IN. Since the buffers treat the inter-row dependencies the entire algorithm can be applied
in a row-by-row fashion.

We next utilize the intensity stream to reconstruct the polygon pixel intensities. As we
have mentioned earlier, the pixels in the interior of each polygon have full intensity and the
pixels not within any polygon are empty (not filled). We use Algorithm 6 to reconstruct the
intensity stream of the polygon boundaries. Note that the corner map CNR is the output of the
inverse corner transform. In this algorithm, buffer BUFF is used to handle the vertical edge
reconstruction.

Algorithm 6 is similar to the previous algorithm in that it utilizes a row buffer to handle the
information that has been processed in the previous row. Lines 5-6 deal with the interior
polygon pixels, lines 7-9 deal with corner pixels, lines 10-20 reconstruct the horizontal edges,
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Algorithm 5 Inverse Corner Transformation - Part 11
Run « means BIN(x,y) = BIN(x,y) @ Fill, BUFF(x) = BUFF(x) PFill, x =x+1

1: fory = 1to R do
22 Fill =0.

3:  Initialize CNR(x) = 0, Vx.
4 forx =1toCdo
5 if IN(x,y) = 1 then
6: Fill =Fill @1
7 if BUFF(x) = 0 then
8 Run «
9: while IN(x,y) = 0do
10: CNR(x) =1
11: Run «
12: end while
13: else
14: outT(x,y—1) =C.
15: Run «
16: while IN(x,y) = 0do
17: ouT(x,y—1)=H
18: Run «
19: end while
20: ouT(x—1,y—1)=C.
21: end if
22: Fill =Fill1 1
23: else
24: if BUFF(x) = 1 then
25: ouT(x,y—1)=V
26: Run «
27: while BUFF(x) = 1 do
28: ouT(x,y—1) =1
29: Run «
30: end while
31: ouT(x—1Ly—-1)=V
32: end if
33: end if
34:  end for
35: end for

and lines 21-33 reconstruct the vertical edges. Because the intensity buffer BUFF requires a full
row, width X bits per pixel bits are required for this process.

Since the decoder requires two width-bit buffers for corner reconstruction and one width X
bits per pixel-bit buffer for intensity decoding, the total decoder memory requirement is
width x (2+bits per pixel). However, whenbits per pixel is atleast3 the decoder
memory requirement is less than that of Block C4 whichis2 x bits per pixel x width.
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Algorithm 6 Intensity Stream Decoding

Input: Intensity stream IN € {0, ---nLv — 1}°
Input: Corner map CNR € {O,,C, H, V1CR
Output: Gray layer image oUT € {0, -- ,nLv — 1}¢R
Intermediate: Intensity buffer BUFF € {0,--- ,nLv — 1}€
1: Initialize t = 1.
2: Initialize OUT(x,y) = 0, Vx, y.
3: fory=1to R do

4 forx=1toCdo
5: if CNR(x,y) = I then
6: OUT(x,y) = nLv.
7: else if CNR(x,y) = C then
8: OUT(x,y) = IN(x,y), t =t + 1.
9: BUFF(x) = 0.
10: else if CNR(x,y) = H then
11: if IN(t+ 1) = € then
12: while CNR(x,y) = H do
13: OUT(p) = IN(f), x = x + 1.
14: end while
15: t=t+2.
16: else
17: while CNR(x,y) = H do
18: ouT(p) = IN(f), t =t+1.
19: end while
20: end if
21: else if CNR(x,y) = V then
22: if BUFF(x) = 0 then
23: if IN(t + 1) = € then
24: OUT(x,y) = IN(t).
25: Set BUFF(x) = IN(t).
26: t=1t+2.
27 else
28: OUT(x,y) = IN(t), t = t+ 1.
29: end if
30: else
31: OUT(x,y) = BUFF(x).
32: end if
33: end if
34:  end for
35: end for

4. Experimental results

We tested the algorithm on a memory circuit which has 13 layers, uses 500 nm lithography
technology, and has repeated memory cell structure. The circuit was rasterized on a Inm grid
and then regrouped with block size 250 x 250. The intensity for each block was quantized
using 32 levels. The resulting 5-bit gray level image rasterized on a 250nm grid satisfies the
minimum edge spacing of 8nm. For this circuit our algorithm CornerGray runs on the entire
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layout image, but Block C4 [Liu et al. (2007)] has a memory shortage/failure. We therefore
divided the image in a way to enable the successful application of Block C4.

Our code for CornerGray and Block C4 is in C/C++ for the former and in C# for the latter. The
experiments were conducted on a laptop computer having a 2GHz Intel Core i7 CPU and 4GB
RAM. The decoder memory requirement of CornerGray (with parameters M = N = 64) was
width x (2+bits per pixel)/8+4(M+ N+1)+2,048 = 8,514 bytes while that of Block
C4was width x bits per pixel x 0.25+ 427 = 8,927. We require 5% less decoder memory
than Block C4. Tables 1 and 2 indicate that the compression performance of CornerGray is 6%
better than Block C4 and is 189 times faster in encoding and 24 times faster in decoding.

CornerGray Result

Layer #|File Size (bytes) | Compression Ratio (x) |[Encoding Time (s)|Decoding Time (s)
Layerl 2,826 10,720 1.27 0.28

Layer2 570,855 53 1.47 0.48

Layer3 2,826 10,720 1.28 0.28

Layer4 805,477 38 1.49 0.54

Layer5 116,516 260 1.29 0.33

Layer6 116,516 260 1.29 0.33

Layer7 531,770 57 1.44 0.44

Layer8 1,730,054 18 1.84 0.80

Layer9 255,919 118 1.29 0.37

Layer10 1,233,137 25 1.68 0.66
Layerl11 107,631 281 1.21 0.31
Layer12 22,092 1,371 1.22 0.29
Layer13 116,516 260 1.27 0.33
Total 5,612,135 70 18.04 5.45

Table 1. Compression Result - CornerGray

Block C4 Result

Layer #|File Size (bytes) | Compression Ratio (x) |[Encoding Time (s)|Decoding Time (s)
Layerl 44,436 682 153.89 6.47
Layer2 356,424 85 170.48 7.14
Layer3 44,436 682 182.02 8.11
Layer4 595,116 51 181.68 7.32
Layer5 164,728 184 201.80 7.75
Layer6 164,728 184 300.37 11.21
Layer7 894,308 34 355.59 13.95
Layer8 1,426,824 21 356.40 11.47
Layer9 643,220 47 328.52 12.42
Layer10 1,021,240 30 302.27 9.70
Layerll 346,480 87 332.92 12.50
Layer12 115,040 263 311.24 10.70
Layer13 166,744 182 238.10 9.89
Total 5,983,724 66 3,415.28 128.63

Table 2. Compression Result - Block C4
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The input image size was 6,800 x 7,128 (=30,294,000 bytes) and the CornerGray parameters
were N = M = 64 for all layers. The compression ratio in Table 1 and Table 2 is defined as

Input File Size

Compressed File Size’

However, the results show that CornerGray is relatively weak for handling massively repeated
patterns. Among the 13 layers, CornerGray did not perform well (compared to Block C4) for
Layer2, Layer4, Layer8, and Layer10. These layers contained patterns which consist of a large
array and Layer8 and Layer10 in particular had complex patterns which were scattered. For
these parts the complex LZ-based copying part of Block C4 resulted in better performance.
Hence, more sophisticated pattern matching is required to improve CornerGray.

5. Conclusion

In the previous section we saw that the algorithm CornerGray outperforms Block C4 and is
considerably faster. The improvement in CornerGray over Block C4 is a result of different
techniques. Our corner location approach is simpler than the context prediction used by Block
C4 to handle the irregular parts of layer images. However, CornerGray needs a better pattern
handling scheme for circuits which contain massively repeated patterns. We are currently
trying to generalize the frequent pattern replacement component of Corner2 [Yang & Savari
(2011)] in order to handle frequent patterns within binary layout images and expect similar
compression improvements for gray level images. The decoding operations for CornerGray
include common decompression schemes which are widely implemented in hardware as
well as simple branches, compares, and memory copies for the corner transformation part.
Therefore our decoder can be deployed using hardware and is an approach to the data
delivery problem of maskless lithography systems.
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