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ABSTRACT

An experimental–theoretical methodology is developed to investigate the characteristics of turbulence in horizontal particle-liquid pipe flows.
Using a discrete wavelet transform, the three-dimensional Lagrangian trajectories of the liquid phase experimentally determined by positron
emission particle tracking are decomposed into their deterministic and stochastic sub-trajectories, which are then utilized to construct profiles
of local fluctuating velocity components and turbulent kinetic energy. The results for a single-phase flow are independently validated using
computational fluid dynamic simulation and the analysis parameters are fine-tuned using direct numerical simulation data from the litera-
ture. In a particle-liquid flow, the investigation explores the influence of various factors including particle size, density, and concentration on
turbulence intensity. Remarkably, the results demonstrate significant effects of the particle size and density on liquid turbulence. The
enhanced understanding gained regarding turbulence intensity helps to advance our fundamental interpretation of the dynamics of particle-
liquid flows, thus potentially aiding the rational design of such complex flows and associated equipment.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0193241

I. INTRODUCTION

Hydraulic conveying of coarse particles plays a pivotal role in var-
ious industries. Understanding and effectively managing these flows
are of utmost significance for a spectrum of industries including min-
ing, construction, food and pharmaceutical processing, chemicals, con-
sumer goods, oil, river engineering, and power generation.1 Efficient
design of these flows ensures optimal production rates, minimizes
wear and erosion of equipment, maximizes safety, and enhances pro-
ductivity, cost-effectiveness, and sustainability across a diverse range of
sectors. Turbulence often plays a crucial role such that the efficiency
and the quality of these flows are determined by the understanding of
turbulence characteristics, including parameters such as turbulent
kinetic energy (TKE), its magnitude, and spatial distribution.
Accessing turbulence properties in pipe flows poses a serious challenge
due to the complexities involved in conducting pointwise experimental
investigations of internal pipe flows. Insufficient understanding of pipe
flow hydrodynamics can result in significant manufacturing issues,
leading to substantial financial losses amounting to billions of dollars
annually.2

TKE is a fundamental parameter that provides insight into the
intensity and fluctuations of turbulence within a flow. Various

experimental methods have been developed to measure TKE and its
dissipation rate, each offering unique advantages and limitations. One
commonly used technique is hot-wire anemometry, which utilizes a
heated wire to measure the velocity fluctuations caused by turbu-
lence.3,4 Accurate positioning and alignment of the wire probe are crit-
ical, however, for obtaining precise measurements.5 Although the
technique enables direct measurement of TKE and its dissipation rate,
it requires multiple hot-wire probes to measure all three-dimensional
(3D) velocity components and their gradients, which can introduce
substantial disturbances in the flow.6 Another approach is laser
Doppler anemometry (LDA), which employs laser light to measure the
velocity of particles within the flow, allowing for the calculation of
TKE.7,8 Similarly, particle image velocimetry (PIV) is another laser-
based technique that provides detailed velocity field information for
TKE analysis.7,9,10 Such advanced optical techniques are, however,
ineffective in opaque particle-liquid flows since they rely on transpar-
ent walls and fluid media. Therefore, TKE measurements by LDA/PIV
methods have been restricted to very dilute suspensions in transparent
conduits.7 Positron emission particle tracking (PEPT) is a powerful
technique used for tracking and analyzing the motion of individual
positron-emitting radiolabeled tracers within complex flow systems.11
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PEPT provides 3D Lagrangian trajectories, and the velocity field of the
flow can be accurately determined from these trajectories. PEPT has
proved particularly valuable in studying complex multiphase flow sys-
tems where traditional methods face challenges due to opacity, particle
size, or complex flow patterns.12–16

Pipe flow exhibits a range of turbulence scales, each contributing
to the overall complexity and dynamics of the flow. At the largest
scales, the flow is characterized by large eddies or vortex structures
known as energetic motions.17 These large-scale structures are respon-
sible for the transport of momentum and energy within the flow. As
the flow progresses downstream, these large eddies break down into
smaller eddies through a process known as energy cascade.18 This leads
to the development of intermediate-scale eddies that interact with the
flow at a more localized level. Finally, at the smallest scales, the turbu-
lent kinetic energy is dissipated through molecular viscosity.18 These
small-scale motions, often referred to as the Kolmogorov scales, are
highly chaotic and contribute to the dissipation of energy.
Understanding and characterizing these different turbulence scales is
crucial for predicting flow behavior, optimizing industrial processes,
and designing efficient pipe flow systems.

A comprehensive approach involving both theoretical and experi-
mental methods is essential for assessing flow turbulence properties in
a pipe. Precise experimental techniques play a vital role in determining
turbulence characteristics, while appropriate theoretical methods are
crucial for the analysis of experimental data. The Lagrangian trajecto-
ries obtained from PEPT offer a wealth of 3D flow information that
can be utilized to deduce a comprehensive understanding of turbu-
lence scales in a pipe. These trajectories encompass both deterministic
displacements characterized by low frequencies and stochastic dis-
placements characterized by high frequencies. The deterministic com-
ponent reflects the bulk or background flow motion, while the
stochastic component captures the movement of small-scale fluid par-
cels. By decomposing the Lagrangian trajectories into their determinis-
tic and stochastic parts, valuable insight can be gained into both the
macro- and micro-movement of the flow. Wavelet decomposition,
specifically the discrete wavelet transform (DWT), is a powerful signal

processing technique that enables simultaneous analysis of signals in
both time and frequency domains. It has emerged as a popular method
for extracting meaningful information from a wide range of signals,
including audio, image, and biomedical data.19–21 The DWT breaks
down a signal into different frequency components using a set of wave-
let functions that are localized in both time and frequency. This
decomposition provides a multi-resolution representation of the signal,
where fine-scale details are captured at higher frequency bands and
coarse-scale features are represented at lower frequency bands. By
applying the DWT, 3D PEPT trajectory features and structures can be
effectively analyzed at different scales, making it a valuable tool in
studying turbulence characteristics of pipe flows.

In this study, a multiscale analysis of 3D PEPT Lagrangian trajec-
tories is employed to examine the turbulence properties within a
single-phase and particle-liquid pipe flows. The trajectories undergo a
discrete wavelet decomposition to separate their deterministic and sto-
chastic components. These decomposed parts are then utilized to con-
struct maps of local mean velocity (background) and fluctuating
velocity. The proposed methodology is first validated for a single-
phase flow by a Eulerian Reynolds-averaged Navier–Stokes (RANS)
computational fluid dynamic (CFD) simulation and by the well-
known theoretical one-seventh power law relationship for velocity dis-
tribution in turbulent pipe flow. Turbulence intensity data obtained by
direct numerical simulation (DNS) available in the literature22 are then
used to fine-tune the main wavelet methodology input parameter,
which is the number of decomposition levels required for the analysis.
The effects of particle concentration, size, and density on the local
TKE profiles are investigated. This approach provides comprehensive
insight into the turbulence properties of pipe flows, with the potential
to aid the optimum design of particle-liquid transport systems.

II. EXPERIMENT
A. Pipe flow loop

A schematic representation of the experimental flow loop used is
depicted in Fig. 1. The flow was driven by a vortex pump (T21-32 HF4
LB1, Turo vortex pump, EGGER, Switzerland) and passed through a

FIG. 1. Experimental pipe flow loop.
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Perspex pipe with an internal diameter of 0.04m. The section used for
flow imaging was 0.4m long and located 3m downstream of the
upstream pipe bend to ensure fully developed flow free from bend
effects.23 The volumetric flow rate of the particle-liquid mixture was mea-
sured in real-time using a Doppler ultrasonic flow meter (UF D5500,
Doppler flowmeter, Micronics). Such measurements were independently
verified at the outlet using stopwatch and bucket measurements, which
also yielded the average particle delivery concentration. A temperature
probe was used to monitor the temperature of the mixture. The carrier
fluid used was a 36wt. % aqueous sugar solution of Newtonian rheology
having a density of 1138kg m�3. The dispersed phase consisted of
mono-size nearly spherical calcium alginate particles, produced in-house
following the procedure described in Ref. 24. Flow imaging was achieved
by the Lagrangian technique of positron emission particle tracking, as
described below. Different particle sizes, densities, and concentrations
were examined in this study, and the experimental conditions are sum-
marized in Table I. Particle density was controlled by introducing silica
powder into the alginate solution during the particle fabrication process.

B. Positron emission particle tracking

PEPT utilizes positron emitting particle tracers as flow followers
to track the phases present (liquid, solid) in three-dimensional space
and time, enabling precise determination of their long-term 3D
Lagrangian trajectories. Unlike other optical visualization techniques,
PEPT uniquely allows particle tracking in opaque fluids and inside
opaque equipment. Our previous studies have demonstrated that
PEPT’s accuracy is comparable to that of PIV and LDA.25 The method
has been extensively used to investigate various flow phenomena, and
detailed information about the technique, its hardware, and software
can be found in our earlier publications.11,26–30 Here, PEPT measure-
ments were performed using c-ray detectors providing a 0.4m
field-of-view (Fig. 1). Typically, an appropriate single particle tracer is
introduced into a closed flow loop to track a particular flow compo-
nent. The particle tracer is allowed to circulate until it maps the entire
flow area of interest, thus providing a statistically representative num-
ber of trajectories (typically> 50). Alternatively, multiple identical
tracers are introduced in the flow to help reduce experimental time.

C. Experimental procedure

Prior to any measurements, the suspension was circulated for a
duration of 2 h until it reached a steady state. This ensured that the
suspension attained a stable temperature and maintained a consistent

viscosity (and therefore Reynolds number) throughout the test. During
this time, any trapped air was also removed from the flow loop. In all
tests, a mean flow velocity of 0.75m s�1 was selected, resulting in a
pipe Reynolds number (Re) of 7800. After reaching steady state, the
radiolabeled tracers were introduced into the flow loop. In the context
of pipe flow, usually 50 trajectories are sufficient to reconstruct the
flow.31 However, in this study, we aimed to enhance data statistics and
reduce experimental time by sequentially introducing eight tracers into
the flow, resulting in approximately 1500 trajectories in 1 h. The solid
and liquid phases were tracked separately. The liquid phase was
tracked using 150lm neutrally buoyant resin particle tracers activated
with 18F. For tracking the solid phase, the tiny resin tracers were
encapsulated inside representative calcium alginate particles.

For faithful tracking of fluid streamlines by a tracer, equilibrium
flow conditions are usually assumed for a Stokes number St� 1.32

The Stokes number is defined as the ratio of the characteristic time of
the PEPT tracer to a characteristic time of the flow,

St ¼ sp
sg

¼ 1
18

qt
q

dt
g

� �2

; (1)

where qt and q are the tracer and fluid densities, respectively, dt is the
tracer diameter, and g is the Kolmogorov length scale. In pipe flow, the
fluid dissipation rate (e) and subsequently the Kolmogorov length scale
vary radially within the pipe. In this work, St was estimated using the
Kolmogorov length scale based on the average value of dissipation
rate, i.e., g¼ (t3/e)1/4, where t is the kinematic viscosity. The average
value of the dissipation rate for a single-phase flow was obtained from
the CFD simulation for Re¼ 7800, giving St¼ 0.07. Since St is much
less than 1, the resin particle tracers could be safely regarded as fluid
tracers.

III. DATA HANDLING
A. Local flow component velocity and particle
concentration

As PEPT measurements provide 3D Lagrangian space and time
data for the different components of the flow, the local instantaneous
Lagrangian velocities for each component can be calculated as follows
from the local time-derivatives of the respective 3D trajectories:

u ¼ uxex þ uyey þ uzez ¼ dx
dt

ex þ dy
dt

ey þ dz
dt

ez ; (2)

where t is time, ex, ey, and ez are unit vectors, and x, y, z are the
Cartesian components of the particle position vector. The local time-
derivatives can be estimated through a differencing technique by con-
sidering the ratio of distance to time in each direction.

The solid particle distribution in the pipe can also be inferred
from the PEPT trajectories. A 3D grid composed of equal volume cells
is employed to represent the pipe domain. Traditionally, the occu-
pancy of a tracer in each cell has been defined as the fraction of the
total experimental time (t1) spent by the tracer in that cell. However,
this definition is influenced by the density of the grid, and as the num-
ber of cells increases, the occupancy tends to zero.33 To overcome this
subjectivity, the ergodic time (tE) can be utilized as the time a tracer
would spend in a cell assuming the system is single phase and ergodic.
In the case of equal volume cells, tE is defined as the total experimental
time divided by the total number of cells, i.e., tE¼ t1/Nc. The concept

TABLE I. Experimental particle-liquid flow conditions.

Particle diameter, dp (mm) 2, 4, 6
Mean particle concentration, Cs (vol. %) 0, 6, 12, 21, 31
Mean mixture velocity (m s�1) 0.75
Pipe Reynolds number, Re (-) 7800
Temperature (�C) 21
Kinematic viscosity, t (m2 s�1) 3.87� 10�6

Liquid density (kg m�3) 1138
Particle to fluid density ratio, qr (-) 1.02, 1.14
Resin particle tracer diameter, dt (lm) 150
Stokes number, St (-) 0.07
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of ergodic time suggests that the tracer has an equal probability of
being present anywhere within the pipe. Consequently, the local occu-
pancy (OE) can be defined as Dt/tE, where Dt represents the time spent
by the tracer inside a specific cell. Our previous studies15,33 demon-
strated that the local occupancy is equivalent to the ratio of the local
solid volume concentration (c) to the mean volume concentration of
solids in the pipe (Cs). By employing these definitions, it becomes pos-
sible to estimate the local solid phase distribution in the pipe.

B. Multiscale Lagrangian trajectory decomposition

The Lagrangian flow trajectories obtained from PEPT contain
valuable information for estimating the average and fluctuating veloci-
ties of the flow. A Lagrangian trajectory is comprised of two distinct
elements: a low-frequency component that represents the deterministic
background portion of the trajectory and a high-frequency component
that represents its stochastic part. Mathematically, this can be
expressed as

T tið Þ ¼ Tdet tið Þ þ Tsto tið Þ

!
x tið Þ ¼ xdet tið Þ þ xsto tið Þ
y tið Þ ¼ ydet tið Þ þ ysto tið Þ
z tið Þ ¼ zdet tið Þ þ zsto tið Þ

i ¼ 1; 2; 3; …; n;

8<
: (3)

where T is the 3D Lagrangian flow trajectory and x, y and z are
Cartesian coordinates. The subscripts det and sto refer to the determin-
istic and stochastic components, respectively. The variable n represents
the total count of position points that form the trajectory.

Wavelet analysis is a powerful decomposition technique used in
signal processing and data analysis.20 It allows for a comprehensive
examination of signals at different scales, making it particularly effec-
tive for studying transient phenomena. The basic principle behind
wavelet analysis involves decomposing a signal into various frequency
components, revealing both localized and global information. Thus, by
using wavelets, we can decompose 3D Lagrangian flow trajectories and
capture both the high-frequency details and the low-frequency trends
present in such trajectories simultaneously. The decomposition process
involves passing the trajectory components through a series of filters at
different scales. These filters extract information within specific fre-
quency ranges, thus facilitating analysis of the trajectory behavior at
different resolution scales. The resulting output consists of approxima-
tion coefficients, representing the low-frequency components, and
detail coefficients, representing the high-frequency components. This
hierarchical representation provides a multi-resolution view of the tra-
jectory, enabling features to be discerned at different scales.

As the original 3D PEPT trajectories are discrete, the discrete
wavelet transform was accordingly used in this study, which is mathe-
matically defined as follows:

DWT j; fð Þ ¼ 1ffiffiffiffiffiffiffi
2jj jp

ð
a tð Þw t � f :2j

2j

� �
dt; (4)

where w is the mother wavelet function, a(t) represents a Cartesian
coordinate (x, y, or z) signal, and f and j are time lag coefficient and
wavelet decomposed information, respectively. DWT uses a discrete
set of scales and positions to analyze the signal and provides a discrete-
time and multi-resolution representation of the signal. The Mallat
algorithm,34 also known as the Mallat pyramid algorithm, is widely

used for implementing the DWT. It provides an efficient and compu-
tationally fast approach for decomposing a signal into its approxima-
tion and detail coefficients at different scales or decomposition levels.
In this algorithm, the original signal is passed through a pair of analysis
filters: a low-pass filter and a high-pass filter. These filters capture the
low-frequency and high-frequency components of the signal, respec-
tively. Then the signal is convolved with the low-pass and high-pass fil-
ters, resulting in two sets of convolved signals, namely, the
approximation A(t) and detail D(t) sub-signals. The decomposition
process is repeated on the approximation sub-signal obtained in the
previous step. This recursive procedure continues until the desired
level of decomposition is reached. Thus, the original signal can be
completely reconstructed from its decomposed approximation and
detail sub-signals as follows:

a tð Þ � Aj tð Þ þ Dj tð Þ þ Dj�1 tð Þ þ � � � þ D1 tð Þ j ¼ 1; 2; 3; � � � ; L;
(5)

where L is the number of decomposition levels.
In this multiscale signal decomposition process, we can effectively

separate the stochastic fluctuations in the flow tracer trajectory from
the overall mean flow motion, enabling us to uncover the turbulent
properties of the flow. As illustrated in Fig. 2, the decomposed compo-
nents of each coordinate can be utilized to reconstruct two distinct
Lagrangian sub-trajectories. Specifically, the approximation sub-
signals (Aj) are employed to reconstruct the deterministic sub-
trajectory, while the detail sub-signals (Dj) are utilized to reconstruct
the stochastic sub-trajectory. The deterministic sub-trajectory that
shows the mean or background component of the trajectory, as
depicted in Fig. 2, closely resembles the original trajectory, but it exhib-
its a smoother tracer movement that represents the flow motion at the
larger scales, specifically advection without the presence of smaller
fluctuations. On the other hand, the stochastic sub-trajectory repre-
sents the fluctuation components of the original trajectory and cap-
tures the smallest scales of the fluid flow, namely, eddy and molecular
diffusion. By studying these two sub-trajectories instead of the original
trajectory, we can analyze the flow behavior and successfully capture
the fluctuations resulting from turbulence within the stochastic sub-
trajectory. However, if we were to examine the original 3D trajectory
from a single-scale perspective, important flow characteristics such as
turbulence properties may be obscured and would be difficult to
extract.

C. Turbulent kinetic energy

Turbulent kinetic energy quantifies the energy associated with the
chaotic, unpredictable motion of a turbulent flow. It can be defined
based on the velocity fluctuations within a turbulent flow, where the
fluid velocity exhibits irregular and chaotic fluctuations in multiple
directions and at various scales. In the Reynolds-averaged equations,
the instantaneous velocity can be separated into its average and fluctu-
ating components,

ui ¼ ui þ u0i; (6)

where ui, ui, and u0i are instantaneous, mean, and fluctuating velocity
along the i-coordinate, respectively. The velocity fluctuations contrib-
ute to the total kinetic energy of the turbulent flow, which is distinct
from the kinetic energy associated with the mean flow. If the mean
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and instantaneous velocity fields are available, it becomes possible to
estimate the fluctuation velocity field and, consequently, the turbulent
kinetic energy. Like the Lagrangian instantaneous calculations dis-
cussed above, the local Lagrangian mean (background) velocities can
be estimated from local time-derivatives of the deterministic 3D sub-
trajectory as follows:

u ¼ uxex þ uyey þ uzez ¼ dx
dt

ex þ dy
dt

ey þ dz
dt

ez; (7)

where x ; y ; and z are Cartesian coordinates of the deterministic sub-
trajectory. Thus, a Lagrangian dataset of both instantaneous and mean
velocities can be computed. Subsequently, the Lagrangian fluctuation
velocities (u0) can be obtained from the difference between the instan-
taneous and mean velocities i.e., u0 ¼ u� u. By obtaining the fluctua-
tion velocities in all three directions, the Lagrangian TKE values (k)
can be estimated using the following equation:

k ¼ 1
2

u02x þ u02y þ u02z
� �

; (8)

where u0x , u
0
y , and u0z are, respectively, the fluctuation velocities in the

x, y, and z directions.

IV. RESULTS AND DISCUSSION

As discussed above, the local 3D Lagrangian velocities were calcu-
lated based on the local time-derivatives of the 3D Lagrangian PEPT
trajectories. To construct the Eulerian velocity profiles across the pipe,
the Lagrangian data were organized into radial bins and then averaged
to analyze the radial distributions of different parameters. The radial
bins were designed so that each bin contains the same fraction of the
pipe cross-sectional area.

The PEPT velocity measurements were validated for a single-
phase (water) flow using a standard RANS Eulerian CFD simulation
conducted under the same experimental conditions and by the

FIG. 2. Flow diagram of wavelet decomposition of a 3D Lagrangian PEPT trajectory.
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well-known theoretical one-seventh power law relationship for veloc-
ity distribution in the turbulent pipe flow. To tune the number of
decomposition levels in the proposed multiscale wavelet methodol-
ogy, literature data on the radial distribution of fluctuating velocities
obtained from DNS simulations of a single-phase liquid flow were
used.22 Since DNS data are derived from direct numerical solutions
of the Navier–Stokes equations free from any modeling assumptions,
they can be regarded as a reliable benchmark for validation purposes.
After validation and fine-tuning, the wavelet decomposition tech-
nique was then used to investigate the turbulence characteristics of
the liquid phase in more complex particle-liquid flows over a range
of flow conditions.

A. Single-phase flow

1. Mean velocity statistics

The radial profile of the normalized mean axial velocity compo-
nent (Uz/Ub), estimated from the original PEPT trajectories is depicted
in Fig. 3 for half of the horizontal pipe section, alongside the mean
axial velocity profiles obtained from CFD and theory at the same pipe
Reynolds number (Re¼ 7800). The Eulerian CFD simulation was per-
formed using the Ansys Fluent platform. The governing equations for
the simulation were the RANS equations, and the k–e turbulence
model was used. The inlet boundary condition consisted of a uniform
velocity profile deduced from the experimentally measured mean flow
rate, whereas at the outlet of the pipe, the boundary condition was the
local static pressure. The no-slip boundary condition was applied to
the pipe wall. The well-known theoretical one-seventh power law
u/umax¼ (1� r/R)1/7, which is a good approximation to velocity distri-
butions in turbulent flow in smooth pipes for Re < 107,35 is also plot-
ted in Fig. 3. There is excellent agreement between the PEPT
measurements, the CFD, and the theoretical velocity profiles, confirm-
ing the high accuracy of PEPT measurements in capturing the charac-
teristics of the turbulent pipe flow. Error bars representing the

standard deviations of PEPT velocities in each radial bin are too small
to be shown on the plot.

In Fig. 4(a), several representative original trajectories of PEPT
tracers are depicted alongside their corresponding deterministic sub-
trajectories, in this case at the fourth level of decomposition (L), exem-
plifying the smooth movement of tracers that represents flow motion
at the largest scale. The selection of the right number of decomposition
levels to be used will be discussed in Sec. IVA2. From such trajecto-
ries, the Lagrangian instantaneous and mean PEPT velocities are esti-
mated based, respectively, on the original and deterministic
trajectories. Contour maps of the instantaneous and deterministic axial
velocities normalized with respect to the mean velocity (Ub) are pre-
sented in Fig. 4(b), while the corresponding radial velocity profiles are
plotted in Fig. 4(c). The contour maps reveal that the instantaneous
and deterministic axial velocity distributions are largely similar,
although some heterogeneity is observed in the contour map of the
mean velocity. Comparing the radial profiles of axial velocity in
Fig. 4(c), the mean (deterministic) profile is smaller than the instanta-
neous profile, particularly in the central region of the pipe, the differ-
ence being equal to the fluctuation velocity. Additionally, the
deterministic profile exhibits a maximum bulk (background) velocity
along the centerline, indicating that the predominantly large-scale fluid
movement occurs in the core region of the pipe.

2. Fluctuating velocity statistics

Thy only input parameter required for this proposed multiscale
methodology is the number of decomposition levels to be adopted, i.e.,
L in Eq. (5). There is no universal approach for selecting an appropri-
ate decomposition level, which depends on the process at hand and
the specific purpose of the analysis. Considering Eq. (6), the higher the
level of decomposition of a time series, the more sub-signals and
detailed information is captured which increases the contribution of
the fluctuating part of the instantaneous velocity compared to that of
the mean velocity. Too high or too low a decomposition level would
lead to erroneous results. Therefore, the optimum decomposition level
will strike the right balance between these two velocity components,
giving the most accurate estimate of the instantaneous velocity. Here,
we used turbulence intensity data from DNS simulations available in
the literature as a benchmark to inform the selection of a suitable
decomposition level; the mean velocity profiles yielded by the DNS
simulations were validated by LDAmeasurements.22

The fluctuating velocity components derived from decomposed
PEPT Lagrangian trajectories at different L values were, therefore,
compared with those obtained from the DNS simulations. The local
Lagrangian fluctuating velocity components at different decomposition
levels were obtained from Eq. (6) and treated in a manner similar to
the mean and instantaneous velocities, enabling the construction of
radial profile plots of turbulent intensities. The root mean square
(rms) of PEPT fluctuating velocities at different L values, normalized
by the mean velocity, in the radial, azimuthal, and axial directions are
presented in Fig. 5, alongside those obtained from DNS simulations
available at Re¼ 7500, which is only slightly lower than Re¼ 7800 at
which the PEPT measurements were obtained. There is optimal agree-
ment between the fluctuating velocity components from PEPT and
DNS at a decomposition level L¼ 4.

Using L¼ 4, the values of turbulent kinetic energy based on
PEPT measurements were calculated using Eq. (8) and are depicted in

FIG. 3. Normalized mean axial velocity profiles: PEPT, theory, and CFD simulations
compared. Error bars of PEPT data points are too small to be shown.
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Fig. 6 in the form of normalized radial distributions across the pipe.
There is a symmetrical bimodal distribution of TKE values characterized
by two peaks situated near the pipe wall. The low TKE region observed
in the center of the pipe corresponds to a region with relatively low tur-
bulence, where the dominant flow motion is governed by large-scale
movements. Turbulence intensity increases away from the center toward
the pipe wall up to r � 0.90R, where it drops sharply to zero. Thus, it
appears that the region away from the center contributes a higher pro-
portion of small-scale movements. This result suggests that injection of
material in this region would be more effective for mixing.

B. Particle-liquid flow

The introduction of coarse particles into a liquid flow within a
pipe can have a substantial impact on the turbulent characteristics
of the flow. The particles act as obstacles that disrupt fluid motion,
thereby altering turbulence properties including turbulent kinetic
energy. The interaction between particles and turbulent eddies gives
rise to a complex interplay involving momentum transfer and
energy dissipation. In Secs. IV B 1–3, the multiscale analysis of 3D
Lagrangian trajectories developed here is used to explore the influ-
ence of introducing coarse particles of various sizes and densities at

FIG. 4. Illustration of (a) typical 3D original and deterministic PEPT trajectories, (b) contour maps of instantaneous and deterministic axial velocities, and (c) radial profiles of
instantaneous and deterministic axial velocities.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 033311 (2024); doi: 10.1063/5.0193241 36, 033311-7

VC Author(s) 2024

 12 M
arch 2024 13:59:03

pubs.aip.org/aip/phf


various concentrations (Table I) on the TKE profiles within the
sugar solution flow described above.

1. Effects of particle concentration

The radial TKE profiles of the carrier fluid conveying nearly neu-
trally buoyant particles of dp¼ 4mm and qr¼ 1.02 at different solid
loadings from 6 to 30 vol. % are depicted in Fig. 7 along with the corre-
sponding radial particle concentration profiles. With the addition of
6 vol. % solid particles, a reduction in local TKE values is observed
compared to the single-phase flow, notably in the lower half of the
pipe section where the local particle concentration is greater than the
mean concentration. However, as more solid particles are added,
the local TKE values increase and the whole profile shifts to the right.
There is a considerable jump in TKE when Cs increases from 6 to
12 vol. %, but the increment gradually reduces at higher particle con-
centrations becoming almost negligible from 21 to 31 vol. %, sugges-
ting the existence of a TKE plateau at higher solid loadings. These

results indicate that the introduction of coarse particles into a single-
phase flow has two counteracting effects: (i) the TKE of the carrier
fluid tends to decrease due to energy transfer to the particles, resulting
in a dampening effect on turbulence intensity; and (ii) concurrently,
particles generate additional eddies in the flow through particle–fluid
and particle–particle interactions, leading to increased fluid fluctua-
tions. At low solid loadings, the TKE attenuation effect dominates,
while TKE amplification becomes more pronounced with increased
particle concentrations due to enhanced particle–fluid and particle–
particle interactions, tending toward a plateau beyond which further
particle addition has little effect.

2. Effects of particle size

The radial profiles of fluid TKE in a particle-liquid flow of nearly
neutrally buoyant particles of various sizes at a mean solid concentra-
tion of 21 vol. % are presented in Fig. 8 alongside the corresponding
radial particle concentration profiles. The results show that the

FIG. 5. Normalized turbulence intensities in (a) axial, (b) radial, and (c) azimuthal directions: PEPT measurements at different decomposition levels compared to DNS
simulations.
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introduction of larger particles leads to increased turbulence intensity
in the carrier fluid. Furthermore, turbulence amplification is more pro-
nounced when increasing the particle size from 4 to 6mm compared
to the increase from 2 to 4mm. It appears, thus, that larger particles
generate stronger eddies that result in more heightened fluctuations in
the carrier fluid. The remarkable axial symmetry of the TKE plots is
due to the absence of significant skewness in the distribution of the
solid phase across the pipe [Fig. 8(b)].

3. Effects of particle density

The impact of particle density on the fluid TKE profiles is illus-
trated in Fig. 9, where the TKE plots are shown for particle density
ratios of 1.02 and 1.14. For a given particle size, denser particles cause
more fluid turbulence than lighter ones. Denser particles exhibit stron-
ger interactions with the surrounding liquid compared to lighter par-
ticles due to their greater inertia and momentum, leading to increased
momentum exchange and energy dissipation within the flow. Denser
particles moving through the liquid induce disturbances in the flow,
resulting in velocity fluctuations and the formation of vortices. These
disturbances act as sources of turbulent kinetic energy, thereby con-
tributing to an increase in the overall turbulence intensity. The stron-
ger particle–fluid interactions and enhanced mixing facilitate the
transfer of energy across different length scales within the flow, further
amplifying turbulence intensity. The near axial symmetry of the TKE
plots is driven by the nearly symmetrical solid distribution plots shown
in Fig. 9(b).

V. CONCLUSION

An experimental–theoretical methodology has been developed to
investigate the characteristics of turbulence in horizontal single-phase
and particle-liquid pipe flows. By utilizing 3D Lagrangian trajectories
of the carrier fluid obtained through a technique of positron emission

particle tracking and applying a discrete wavelet transform, the local
fluctuating velocity components and turbulent kinetic energy profiles
were analyzed at different scales. The accuracy of the PEPT measure-
ments was validated for the single-phase flow by CFD simulation and
the well-known one-seventh power law relationship for the turbulent
pipe flow. Direct numerical simulations (DNS) data were used as a
benchmark to fine-tune the wavelet analysis before being applied to
the investigation of more complex particle-liquid flows.

In particle-liquid flows, the results demonstrated that the particle
size and density have significant effects on liquid turbulence. The

FIG. 6. Radial distribution of normalized turbulent kinetic energy estimated from
PEPT measurements: single-phase flow; Re¼ 7800.

FIG. 7. Radial distributions of (a) fluid turbulent kinetic energy and (b) particle con-
centration for different solid loadings: dp¼ 4 mm, qr¼ 1.02.
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introduction of larger and denser particles led to higher turbulence
intensities in the carrier fluid. Denser and larger particles exhibited a
more pronounced interaction with the surrounding liquid, resulting in
increased momentum exchange and energy dissipation within the
flow. These interactions introduced additional sources of turbulence
generation and dissipation, leading to enhanced fluctuations. Low par-
ticle concentrations lead to reduced turbulence while higher concentra-
tions enhance turbulence up to a point beyond which further increases
have a negligible effect on turbulence intensity. The findings of this
study provide valuable insight into the dynamics of particle-liquid pipe
flows potentially aiding the rational design of industrial flows across a
spectrum of applications.
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NOMENCLATURE

Symbols

Aj Approximate sub-signal at jth level
Cs Volumetric mean solid concentration (vol. %)
c Local particle concentration

Dj Detail sub-signal at jth level
dp Particle diameter (m)
dt Tracer diameter (m)

ex, ey, ez Unit vectors in x, y, and z direction
k Turbulent kinetic energy (m2 s�2)
L Number of decomposition levels
n Number of data points
r Radial position (m)
R Pipe radius (m)
Re Pipe Reynolds number
St Stokes number
T 3D Lagrangian trajectory
t Time (s)
u Instantaneous velocity (m s�1)
u Mean velocity (m s�1)
u0 Fluctuation velocity (m s�1)
Ub Mean flow velocity (m s�1)
Uz Mean axial velocity (m s�1)
x x-direction position (m)

xdet, ydet, zdet x-, y-, and z-direction deterministic Lagrangian dis-
placement (m)

xsto, ysto, zsto x-, y-, and z-direction stochastic Lagrangian dis-
placement (m)

y y-direction position (m)
z z-direction position (m)

Greek Symbols

t Kinematic viscosity (m2 s�1)
l Viscosity (kg m�1 s�1)
q Liquid density (kg m�3)
qr Particle to liquid density ratio
qt Tracer particle density (kg m�3)
w Wavelet mother function

Abbreviations

CFD Computational fluid dynamics

DNS Direct numerical simulation
DWT Discrete wavelet transform
LDA Laser Doppler anemometry
PEPT Positron emission particle tracking
PIV Particle image velocimetry
TKE Turbulent kinetic energy
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