31 research outputs found

    Analysis of immumoreactivity of heterologously expressed non-structural protein 4B (NS4B) from Hepatitis C Virus (HCV) genotype 1a

    Get PDF
    Background: Detection of hepatitis C virus specific antibodies is the initial step in chronic HCV diagnosis. HCV NS4B is among the most immunogenic HCV antigens and has been widely used in commercial Enzyme Immunoassays (EIA). Additionally, NS4B, a key protein in the virus replication, can be an alternative target for antiviral therapy. Objectives: Development of a new method for high-level expression and purification of NS4B coding region was the aim of the report. Materials and Methods: Viral RNA was purified from the serum of an HCV positive patient and NS4B coding region was amplified using nested RT-PCR. PCR products were cloned into pET102/D-TOPO expression vector and transformed into E. coli BL21. Induction was performed by adding 1mM isopropyl-β-D-thiogalactopyranoside (IPTG) to the culture medium. Immunoreactivity of the purified recombinant proteins was evaluated by immunoblotting and indirect enzymelinked immunosorbent assay (ELISA). Results: The recombinant NS4B protein was expressed and its immunoreactivity was confirmed by ELISA and western blotting. Conclusions: The directional TOPO cloning provides an efficient and easy platform for heterologous expression of immunoreactiveHCV NS4B. © 2015 Kowsar Medical Publishing Company. All rights reserved

    Circular RNAs in cancer: New insights into functions and implications in ovarian cancer

    Get PDF
    Circular RNAs (circRNAs) are a class of long non-coding RNAs (lncRNAs) which have a circular and closed loop structure. They are ubiquitous, stable, conserved and diverse RNA molecules with a range of activities such as translation and splicing regulation, which are able to interacting with RNA-binding proteins and specially miRNA sponge. The expression patterns of the circRNAs exhibited tissue specificity and also, step and stage specificity. Accumulating evidences approved the critical role of circular RNAs in many cancers such as ovarian cancer. Given that these molecules exert their effects through multiple cellular and molecular mechanisms (i.e., angiogenesis, apoptosis, growth, and metastasis) which are involved in cancer pathogenesis, circular RNAs, in particular, act by controlling cell proliferation in ovarian cancer, so that, it has been shown that the deregulation of these molecules is associated with initiation and progression of ovarian cancer. Therefore, they are attractive molecules which have introduced them as cancer biomarkers. Moreover, they could be used as new therapeutic candidates for developing novel treatment strategies. Here, for first time, we have provided a comprehensive review on the recent knowledge of circular RNAs and their pathological roles in the ovarian cancer. © 2019 The Author(s)

    Electrochemical-based biosensors for microRNA detection: Nanotechnology comes into view

    Get PDF
    Nanotechnology plays an undeniable significant role in medical sciences, particularly in the field of biomedicine. Development of several diagnostic procedures in medicine has been possible through the beneficial application of nano-materials, among which electrochemical nano-biosensors can be mentioned. They can be employed to quantify various clinical biomarkers in detection, evaluation, and follow up stages of the illnesses. MicroRNAs, a group of regulatory short RNA fragments, added a new dimension to the management and diagnosis of several diseases. Mature miRNAs are single-stranded RNA molecules approximately 22 nucleotides in length, which regulate a vast range of biological functions from cellular proliferation and death to cancer development and progression. Recently, diagnostic value of miRNAs in various diseases has been demonstrated. There are many traditional methods for detection of miRNAs including northern blotting, quantitative real time PCR (qRT-PCR), microarray technology, nanotechnology-based approaches, and molecular biology tools including miRNA biosensors. In comparison with other techniques, electrochemical nucleic acid biosensor methods exhibit many interesting features, and could play an important role in the future nucleic acid analysis. This review paper provides an overview of some different types of nanotechnology-based biosensors for detection of miRNAs. © 201

    Circular RNAs and gastrointestinal cancers: Epigenetic regulators with a prognostic and therapeutic role

    Get PDF
    Both environmental and genetic factors are involved in the initiation and development of gastrointestinal cancer. Covalent closed circular RNAs (circRNAs) are produced by a mechanism called �back-splicing� from mRNAs. They are highly stable and show cell and tissue specific expression patterns. Although some functions such as �microRNA sponge� and �RNA binding protein sponge� have been reported for a small number of circRNAs, the function of thousands of other circRNAs is still unknown. Dysregulation of circRNAs has been reported in many GI cancers and are involved in metastasis and invasion. CircRNAs have been reported to be useful as prognostic markers and targets for developing new treatments. We first describe the properties and biogenesis of circRNAs. We then summarize recent reports about circRNA functions, expression status, and their potential to be used as biomarkers in GI cancers including, gastric cancer, colorectal cancer, esophageal cancer, hepatocellular carcinoma, gallbladder cancer and pancreatic cancer. © 2019 Elsevier B.V

    Quercetin and cancer: New insights into its therapeutic effects on ovarian cancer cells

    Get PDF
    Ovarian cancer is known as a serious malignancy that affects women's reproductive tract and can considerably threat their health. A wide range of molecular mechanisms and genetic modifications have been involved in ovarian cancer pathogenesis making it difficult to develop effective therapeutic platforms. Hence, discovery and developing new therapeutic approaches are required. Medicinal plants, as a new source of drugs, could potentially be used alone or in combination with other medicines in the treatment of various cancers such as ovarian cancer. Among various natural compounds, quercetin has shown great anti-cancer and anti-inflammatory properties. In vitro and in vivo experiments have revealed that quercetin possesses a cytotoxic impact on ovarian cancer cells. Despite obtaining good results both in vitro and in vivo, few clinical studies have assessed the anti-cancer effects of quercetin particularly in the ovarian cancer. Therefore, it seems that further clinical studies may introduce quercetin as therapeutic agent alone or in combination with other chemotherapy drugs to the clinical setting. Here, we not only summarize the anti-cancer effects of quercetin but also highlight the therapeutic effects of quercetin in the ovarian cancer. © 2020 The Author(s)

    Electrochemical-Based Biosensors: New Diagnosis Platforms for Cardiovascular Disease

    Get PDF
    One of the major reasons for mortality throughout the world is cardiovascular diseases. Therefore, bio-markers of cardiovascular disease are of high importance to diagnose and manage procedure. Detecting biomarkers provided a promising procedure in developing bio-sensors. Fast, selective, portable, accurate, inexpensive, and sensitive biomarker sensing instruments will be necessary for detecting and predicting diseases. One of the cardiac biomarkers may be ordered as C-reactive proteins, lipoprotein-linked phospho-lipase, troponin I or T, myoglobin, interleukin-6, interleukin-1, tumor necrosis factor alpha, LDL and myeloperoxidase. The biomarkers are applied to anticipate cardio-vascular illnesses. Initial diagnoses of these diseases are possible by several techniques; however, they are laborious and need costly apparatus. Current researches designed various bio-sensors for resolving the respective issues. Electrochemical instruments and the proposed bio-sensors are preferred over other methods due to its inexpensiveness, mobility, reliability, repeatability. The present review comprehensively dealt with detecting biomarkers of cardiovascular disease through electro-chemical techniques. Copyright© Bentham Science Publishers; For any queries, please email at [email protected]

    TGF-β and WNT signaling pathways in cardiac fibrosis: non-coding RNAs come into focus

    Get PDF
    Cardiac fibrosis describes the inappropriate proliferation of cardiac fibroblasts (CFs), leading to accumulation of extracellular matrix (ECM) proteins in the cardiac muscle, which is found in many pathophysiological heart conditions. A range of molecular components and cellular pathways, have been implicated in its pathogenesis. In this review, we focus on the TGF-β and WNT signaling pathways, and their mutual interaction, which have emerged as important factors involved in cardiac pathophysiology. The molecular and cellular processes involved in the initiation and progression of cardiac fibrosis are summarized. We focus on TGF-β and WNT signaling in cardiac fibrosis, ECM production, and myofibroblast transformation. Non-coding RNAs (ncRNAs) are one of the main players in the regulation of multiple pathways and cellular processes. MicroRNAs, long non-coding RNAs, and circular long non-coding RNAs can all interact with the TGF-β/WNT signaling axis to affect cardiac fibrosis. A better understanding of these processes may lead to new approaches for diagnosis and treatment of many cardiac conditions. Video Abstract

    Data on cytotoxic and antibacterial activity of synthesized Fe3O4 nanoparticles using Malva sylvestris

    Get PDF
    The biosynthesis of materials using medicinal plants can be a low-cost and eco-friendly approach due to their extraordinary properties. Herein, we reported a facile synthesis of Fe3O4 nanoparticles using Malva sylvestris. The surface morphology, functional groups, and elemental analysis were done to characterize the synthesized nanoparticles. The cytotoxicity performance of the synthesized nanoparticles was analyzed by exposing nanoparticles to MCF-7 and Hep-G2 cancer cell lines through MTT colorimetric assay and the IC50 value was defined as 100 μg/mL and 200 μg/mL, respectively. The antibacterial performance of synthesized nanoparticles against four different bacterial strains including Staphylococcus aureus, Corynebacterium, Pseudomonas aeruginosa, and Klebsiella pneumoniae were assessed through microdilution broth method. The synthesized Fe3O4 nanoparticles using Malva sylvestris demonstrated higher antibacterial effects against Gram-positive strains with MIC values of 62.5 μg/mL and 125 μg/mL which increase the inhibitory percentage to more than 90%

    The use of proteomics for the identification of promising vaccine and diagnostic biomarkers in Plasmodium falciparum

    Get PDF
    Plasmodium falciparumis the main cause of severe malaria in humans that can lead to death. There is growing evidence of drug-resistance inP. falciparumtreatment, and the design of effective vaccines remains an ongoing strategy to control the disease. On the other hand, the recognition of specific diagnostic markers forP. falciparumcan accelerate the diagnosis of this parasite in the early stages of infection. Therefore, the identification of novel antigenic proteins especially by proteomic tools is urgent for vaccination and diagnosis ofP. falciparum. The proteome diversity of the life cycle stages ofP. falciparum, the altered proteome ofP. falciparum-infected human sera and altered proteins inP. falciparum-infected erythrocytes could be proposed as appropriate proteins for the aforementioned aims. Accordingly, this review highlights and proposes different proteins identified using proteomic approaches as promising markers in the diagnosis and vaccination ofP. falciparum.It seems that most of the candidates identified in this study were able to elicit immune responses in theP. falciparum-infected hosts and they also played major roles in the life cycle, pathogenicity and key pathways of this parasite

    MiRNAs derived from cancer-associated fibroblasts in colorectal cancer

    No full text
    Currently, the incidence of colorectal cancer (CRC) is increasing across the world. The cancer stroma exerts an impact on the spread, invasion and chemoresistance of CRC. The tumor microenvironment involves a complex interaction between cancer cells and stromal cells, for example, cancer-associated fibroblasts (CAFs). CAFs can promote neoplastic angiogenesis and tumor development in CRC. Mounting evidence suggests that many miRNAs are overexpressed (miR-21, miR-329, miR-181a, miR-199a, miR-382 and miR-215) in CRC CAFs, and these miRNAs can influence the spread, invasiveness and chemoresistance in neighboring tumor cells via paracrine signaling. Herein, we summarize the pathogenic roles of miRNAs and CAFs in CRC. Moreover, for first time, we highlight the miRNAs derived from CRC-associated CAFs and their roles in CRC pathogenesis. © 2019 Future Medicine Ltd
    corecore