11,648 research outputs found

    Stability of continuously pumped atom lasers

    Get PDF
    A multimode model of a continuously pumped atom laser is shown to be unstable below a critical value of the scattering length. Above the critical scattering length, the atom laser reaches a steady state, the stability of which increases with pumping. Below this limit the laser does not reach a steady state. This instability results from the competition between gain and loss for the excited states of the lasing mode. It will determine a fundamental limit for the linewidth of an atom laser beam.Comment: 4 page

    Heap Formation in Granular Media

    Full text link
    Using molecular dynamics (MD) simulations, we find the formation of heaps in a system of granular particles contained in a box with oscillating bottom and fixed sidewalls. The simulation includes the effect of static friction, which is found to be crucial in maintaining a stable heap. We also find another mechanism for heap formation in systems under constant vertical shear. In both systems, heaps are formed due to a net downward shear by the sidewalls. We discuss the origin of net downward shear for the vibration induced heap.Comment: 11 pages, 4 figures available upon request, Plain TeX, HLRZ-101/9

    Sensory evaluation of different levels of roasting of New Zealand grown hazelnuts

    Get PDF
    Hazelnuts (Corylus aveIIana L.) are a very recent addition to commercial horticulture in New Zealand and Whiteheart has been selected as the primary commercial cultivar. No published information is available on the optimum temperatures needed to roast the dried nuts. An experiment was designed to investigate three different roasting treatments, blanching, light roast and full roast using a conveyer type roasting oven set at 200°C. The roasted samples were then analysed for proximate contents and evaluated using a taste panel. The appearance, texture, flavour and overall appearance was evaluated by 63 tasters at one time. The blanched nut was appreciated for its colour but it was considered too chewy and bland in taste compared to the roasted nuts. Each one of the heat treatments gave an improved rating for all of the attributes measured. Roasting in the oven set at 200°C for 6 minutes (full roast) was the treatment appreciated most by all tasters. Analysis of the correlation coefficients showed that the overriding impression about the hazelnuts comes from the flavour of the nut followed by its texture. The overall appearance of the nut was not highly rated by the tasters once the hazelnuts had been heat treated

    Nucleon-Nucleon Scattering From Fully-Dynamical Lattice QCD

    Full text link
    We present results of the first fully-dynamical lattice QCD determination of nucleon-nucleon scattering lengths in the 1S0 channel and 3S1-3D1 coupled channels. The calculations are performed with domain-wall valence quarks on the MILC staggered configurations with lattice spacing of b=0.125 fm in the isospin-symmetric limit, and in the absence of electromagnetic interactions.Comment: 4 pages, 4 figure

    BB Potentials in Quenched Lattice QCD

    Full text link
    The potentials between two B-mesons are computed in the heavy-quark limit using quenched lattice QCD at mπ∼400 MeVm_\pi\sim 400~{\rm MeV}. Non-zero central potentials are clearly evident in all four spin-isospin channels, (I,s_l) = (0,0) , (0,1) , (1,0) , (1,1), where s_l is the total spin of the light degrees of freedom. At short distance, we find repulsion in the I≠slI\ne s_l channels and attraction in the I=s_l channels. Linear combinations of these potentials that have well-defined spin and isospin in the t-channel are found, in three of the four cases, to have substantially smaller uncertainties than the potentials defined with the s-channel (I,s_l), and allow quenching artifacts from single hairpin exchange to be isolated. The BB*\pi coupling extracted from the long-distance behavior of the finite-volume t-channel potential is found to be consistent with quenched calculations of the matrix element of the isovector axial-current. The tensor potentials in both of the s_l = 1 channels are found to be consistent with zero within calculational uncertainties.Comment: 30 page

    GHRS and ORFEUS-II Observations of the Highly Ionized Interstellar Medium Toward ESO141-055

    Get PDF
    We present Goddard High Resolution Spectrograph and ORFEUS-II measurements of Si IV, CIV, N V, and O VI absorption in the interstellar medium of the Galactic disk and halo toward the nucleus of the Seyfert galaxy ESO141-055. The high ionization absorption is strong, with line strengths consistent with the spectral signature expected for hot (log T = 5-6) collisionally ionized gas in either a ``Galactic fountain'' or an inhomogeneous medium containing a mixture of conductive interfaces and turbulent mixing layers. The total O VI column density of log N ~ 15 suggests that the scale height of O VI is large (>3 kpc) in this direction. Comparison of the high ion column densities with measurements for other sight lines indicates that the highly ionized gas distribution is patchy. The amount of O VI perpendicular to the Galactic plane varies by at least a factor of ~4 among the complete halo sight lines thus far studied. In addition to the high ion absorption, lines of low ionization species are also present in the spectra. With the possible exception of Ar I, which may have a lower than expected abundance resulting from partial photoionization of gas along the sight line, the absorption strengths are typical of those expected for the warm, neutral interstellar medium. The sight line intercepts a cold molecular cloud with log N(H2) ~ 19. The cloud has an identifiable counterpart in IRAS 100-micron emission maps of this region of the sky. We detect a Ly-alpha absorber associated with ESO141-055 at z = 0.03492. This study presents an enticing glimpse into the interstellar and intergalactic absorption patterns that will be observed at high spectral resolution by the Far Ultraviolet Spectroscopic Explorer.Comment: 24 pages + 8 figures, uses aaspp4.sty. Accepted for publication in Ap

    Angle of Repose and Angle of Marginal Stability: Molecular Dyanmics of Granular Particles

    Full text link
    We present an implementation of realistic static friction in molecular dynamics (MD) simulations of granular particles. In our model, to break contacts between two particles, one has to apply a finite amount of force, determined by the Coulomb criterion. Using a two dimensional model, we show that piles generated by avalanches have a {\it finite} angle of repose θR\theta_R (finite slopes). Furthermore, these piles are stable under tilting by an angle smaller than a non-zero tilting angle θT\theta_T, showing that θR\theta_R is different from the angle of marginal stability θMS\theta_{MS}, which is the maximum angle of stable piles. These measured angles are compared to a theoretical approximation. We also measure θMS\theta_{MS} by continuously adding particles on the top of a stable pile.Comment: 14 pages, Plain Te

    Nucleon-Nucleon Scattering in a Harmonic Potential

    Full text link
    The discrete energy-eigenvalues of two nucleons interacting with a finite-range nuclear force and confined to a harmonic potential are used to numerically reconstruct the free-space scattering phase shifts. The extracted phase shifts are compared to those obtained from the exact continuum scattering solution and agree within the uncertainties of the calculations. Our results suggest that it might be possible to determine the amplitudes for the scattering of complex systems, such as n-d, n-t or n-alpha, from the energy-eigenvalues confined to finite volumes using ab-initio bound-state techniques.Comment: 19 pages, 13 figure

    Force Chains, Microelasticity and Macroelasticity

    Full text link
    It has been claimed that quasistatic granular materials, as well as nanoscale materials, exhibit departures from elasticity even at small loadings. It is demonstrated, using 2D and 3D models with interparticle harmonic interactions, that such departures are expected at small scales [below O(100) particle diameters], at which continuum elasticity is invalid, and vanish at large scales. The models exhibit force chains on small scales, and force and stress distributions which agree with experimental findings. Effects of anisotropy, disorder and boundary conditions are discussed as well.Comment: 4 pages, 11 figures, RevTeX 4, revised and resubmitted to Phys. Rev. Let
    • …
    corecore