8,773 research outputs found

    The Born and Markov approximations for atom lasers

    Full text link
    We discuss the use of the Born and Markov approximations in describing the dynamics of an atom laser. In particular, we investigate the applicability of the quantum optical Born-Markov master equation for describing output coupling. We derive conditions based on the atomic reservoir, and atom dispersion relations for when the Born-Markov approximations are valid and discuss parameter regimes where these approximations fail in our atom laser model. Differences between the standard optical laser model and the atom laser are due to a combination of factors, including the parameter regimes in which a typical atom laser would operate, the different reservoir state which is appropriate for atoms, and the different dispersion relations between atoms and photons. We present results based on an exact method in the regimes in which the Born-Markov approximation fails. The exact solutions in some experimentally relavent parameter regimes give non-exponential loss of atoms from a cavity.Comment: 10 pages, 3 figures. (2 new figues). Exact solutions have been included in section II. Sections IV and V have been expanded. A new section discussing the effects of gravity has been include

    Tooth Contact Shift in Loaded Spiral Bevel Gears

    Get PDF
    An analytical method is presented to predict the shifts of the contact ellipses of spiral bevel gear teeth under load. The contact ellipse shift is the motion of the tooth contact position from the ideal pitch point to its location under load. The shifts are due to the elastic motions of the gear and pinion supporting shafts and bearings. The calculations include the elastic deflections of the gear shafts and the deflections of the four shaft bearings. The method assumes that the surface curvature of each tooth is constant near the unloaded pitch point. Results from these calculations will help designers reduce transmission weight without seriously reducing transmission performance

    Heap Formation in Granular Media

    Full text link
    Using molecular dynamics (MD) simulations, we find the formation of heaps in a system of granular particles contained in a box with oscillating bottom and fixed sidewalls. The simulation includes the effect of static friction, which is found to be crucial in maintaining a stable heap. We also find another mechanism for heap formation in systems under constant vertical shear. In both systems, heaps are formed due to a net downward shear by the sidewalls. We discuss the origin of net downward shear for the vibration induced heap.Comment: 11 pages, 4 figures available upon request, Plain TeX, HLRZ-101/9

    Fine wavelength id for tunable laser local oscillators

    Get PDF
    A wavelength ID device which consists of an electronic show that the etalon has a finesse F 30 which is maintainable for several days. These tests also demonstrate that the etalon system is capable of resonance frequency stability during similar time periods. With currently available coatings, this level of performance is achievable over an optical bandwidth delta lambda = 3 micrometers centered at lambda = 10 micrometers

    Governing body nurses' experiences of clinical commissioning groups: an observational study of two clinical commissioning groups (CCGs) in England

    Get PDF
    Clinical commissioning groups (CCGs) were set up under the Health & Social Care Act (2012) in England to commission healthcare services for local communities. Governing body nurses (GBNs) provide nursing leadership to commissioning services on CCGs. Little is known about how nurses function on clinical commissioning groups. We conducted observations of seven formal meetings, three informal observation sessions, and seven interviews from January 2015 to July 2015 in two CCGs in the South of England. Implicit in the GBN role is the enduring and contested assumption that nurses embody the values of caring, perception and compassion. This assumption undermines the authority of nurses in multidisciplinary teams where authority is traditionally clinically based. Emerging roles within CCGs are not based on clinical expertise but on well-established new public management concepts which promote governance over clinically based authority. While GBNS claim an authority located in clinical and managerial expertise, this is contested by members of the CCG and external stakeholders irrespective of whether it is aligned with clinical knowledge and practice or with new forms of management, as both disregard the type of expertise nurses in commissioning embody. Key words: case study; clinical commissioning groups; governing body nurses; leadership; authority; observation

    Two scenarios for avalanche dynamics in inclined granular layers

    Full text link
    We report experimental measurements of avalanche behavior of thin granular layers on an inclined plane for low volume flow rate. The dynamical properties of avalanches were quantitatively and qualitatively different for smooth glass beads compared to irregular granular materials such as sand. Two scenarios for granular avalanches on an incline are identified and a theoretical explanation for these different scenarios is developed based on a depth-averaged approach that takes into account the differing rheologies of the granular materials.Comment: 4 pages, 4 figures, accepted to Phys. Rev. Let

    Prospects For Identifying Dark Matter With CoGeNT

    Full text link
    It has previously been shown that the excess of events reported by the CoGeNT collaboration could be generated by elastically scattering dark matter particles with a mass of approximately 5-15 GeV. This mass range is very similar to that required to generate the annual modulation observed by DAMA/LIBRA and the gamma rays from the region surrounding the Galactic Center identified within the data of the Fermi Gamma Ray Space Telescope. To confidently conclude that CoGeNT's excess is the result of dark matter, however, further data will likely be needed. In this paper, we make projections for the first full year of CoGeNT data, and for its planned upgrade. Not only will this body of data more accurately constrain the spectrum of nuclear recoil events, and corresponding dark matter parameter space, but will also make it possible to identify seasonal variations in the rate. In particular, if the CoGeNT excess is the product of dark matter, then one year of CoGeNT data will likely reveal an annual modulation with a significance of 2-3σ\sigma. The planned CoGeNT upgrade will not only detect such an annual modulation with high significance, but will be capable of measuring the energy spectrum of the modulation amplitude. These measurements will be essential to irrefutably confirming a dark matter origin of these events.Comment: 6 pages, 6 figure
    • …
    corecore