6,105 research outputs found

    Theory of fishnet negative-index optical metamaterials

    Full text link
    We theoretically study fishnet metamaterials at optical frequencies. In contrast to earlier works, we provide a microscopic description by tracking the transversal and longitudinal flows of energy through the fishnet mesh composed of intersecting subwavelength plasmonic waveguides. The analysis is supported by a semi-analytical model based on surface-plasmon coupled-mode equations, which provides accurate formulas for the fishnet refractive index, including the real-negative and imaginary parts. The model simply explains how the surface plasmons couple at the waveguide intersections and it shines new light on the fishnet negative-index paradigm at optical frequencies. Extension of the theory for loss-compensated metamaterials with gain media is also presented.Comment: 4 figure

    Homogenization of an ensemble of interacting resonant scatterers

    Full text link
    We study theoretically the concept of homogenization in optics using an ensemble of randomly distributed resonant stationary atoms with density ρ\rho. The ensemble is dense enough for the usual condition for homogenization, viz. ρλ3≫1\rho\lambda^3 \gg 1, to be reached. Introducing the coherent and incoherent scattered powers, we define two criteria to define the homogenization regime. We find that when the excitation field is tuned in a broad frequency range around the resonance, none of the criteria for homogenization is fulfilled, meaning that the condition ρλ3≫1\rho\lambda^3\gg 1 is not sufficient to characterize the homogenized regime around the atomic resonance. We interpret these results as a consequence of the light-induced dipole-dipole interactions between the atoms, which implies a description of scattering in terms of collective modes rather than as a sequence of individual scattering events. Finally, we show that, although homogenization can never be reached for a dense ensemble of randomly positioned laser-cooled atoms around resonance, it becomes possible if one introduces spatial correlations in the positions of the atoms or non-radiative losses, such as would be the case for organic molecules or quantum dots coupled to a phonon bath.Comment: 9 pages, 5 figures. Corrected mistakes in reference

    Slow-wave effect and mode-profile matching in Photonic Crystal microcavities

    Full text link
    Physical mechanisms involved in the light confinement in photonic crystal slab microcavities are investigated. We first present a full three-dimensional numerical study of these microcavities. Then, to gain physical insight into the confinement mechanisms, we develop a Fabry-Perot model. This model provides accurate predictions and sheds new light on the physics of light confinement. We clearly identify two mechanisms to enhance the Q factor of these microcavities. The first one consists in improving the mode-profile matching at the cavity terminations and the second one in using a slow wave in the cavity.Comment: accepted for publication in Phys. Rev. B, 8 pages, 4 figure

    Difference between penetration and damping lengths in photonic crystal mirrors

    Full text link
    Different mirror geometries in two-dimensional photonic crystal slabs are studied with fully-vectorial calculations. We compare their optical properties and, in particular, we show that, for heterostructure mirrors, the penetration length associated with the delay induced by distributed reflection is not correlated to the characteristic damping length of the electromagnetic energy distribution in the mirror. This unexpected result evidences that the usual trade-off between short damping lengths and large penetration lengths that is classically encountered in distributed Bragg reflectors can be overcome with carefully designed photonic crystal structures.Comment: to be published in Applied Physics Letters, 4 pages, 4 figure

    Relevance of d-D interactions on neutron and tritium production in IFMIF-EVEDA accelerator prototype

    Full text link
    In the IFMIF-EVEDA accelerator prototype, deuterium is implanted in the components due to beam losses and in the beam dump, where the beam is stopped. The interaction of the deuterons with the deuterium previously implanted leads to the production of neutrons and tritium, which are important issues for radioprotection and safety analysis. A methodology to assess these production pathways in more realistic approach has been developed. The new tools and their main achievement are: (i) an “effective diffusivity coefficient” (deduced from available experimental data) that enables simulation of the diffusion phase, and (ii) the MCUNED code (able to handle deuteron transport libraries) allows to simulate the transport-slowdown of deuteron/tritium (to get the concentration profiles) and the neutron/tritium productions from d-Cu and d-D for up to 9 MeV incident deuteron. The results with/without theses tools are presented and their effect on the relevance of d-D sources versus d-Cu is evaluated

    Extended sudden approximation model for high-energy nucleon removal reactions

    Full text link
    A model based on the sudden approximation has been developed to describe high energy single nucleon removal reactions. Within this approach, which takes as its starting point the formalism of Hansen \cite{Anne2}, the nucleon-removal cross section and the full 3-dimensional momentum distributions of the core fragments including absorption, diffraction, Coulomb and nuclear-Coulomb interference amplitudes, have been calculated. The Coulomb breakup has been treated to all orders for the dipole interaction. The model has been compared to experimental data for a range of light, neutron-rich psd-shell nuclei. Good agreement was found for both the inclusive cross sections and momentum distributions. In the case of 17^{17}C, comparison is also made with the results of calculations using the transfer-to-the-continuum model. The calculated 3-dimensional momentum distributions exhibit longitudinal and transverse momentum components that are strongly coupled by the reaction for s-wave states, whilst no such effect is apparent for d-waves. Incomplete detection of transverse momenta arising fromlimited experimental acceptances thus leads to a narrowing of the longitudinal distributions for nuclei with significant s-wave valence neutron configurations, as confirmed by the data. Asymmetries in the longitudinal momentum distributions attributed to diffractive dissociation are also explored.Comment: 16 figures, submitted to Phys. Rev.

    New capabilities for Monte Carlo simulation of deuteron transport and secondary products generation

    Get PDF
    Several important research programs are dedicated to the development of facilities based on deuteron accelerators. In designing these facilities, the definition of a validated computational approach able to simulate deuteron transport and evaluate deuteron interactions and production of secondary particles with acceptable precision is a very important issue. Current Monte Carlo codes, such as MCNPX or PHITS, when applied for deuteron transport calculations use built-in semi-analytical models to describe deuteron interactions. These models are found unreliable in predicting neutron and photon generated by low energy deuterons, typically present in those facilities. We present a new computational tool, resulting from an extension of the MCNPX code, which improve significantly the treatment of problems where any secondary product (neutrons, photons, tritons, etc.) generated by low energy deuterons reactions could play a major role. Firstly, it handles deuteron evaluated data libraries, which allow describing better low deuteron energy interactions. Secondly, it includes a reduction variance technique for production of secondary particles by charged particle-induced nuclear interactions, which allow reducing drastically the computing time needed in transport and nuclear response calculations. Verification of the computational tool is successfully achieved. This tool can be very helpful in addressing design issues such as selection of the dedicated neutron production target and accelerator radioprotection analysis. It can be also helpful to test the deuteron cross-sections under development in the frame of different international nuclear data program
    • 

    corecore