We study theoretically the concept of homogenization in optics using an
ensemble of randomly distributed resonant stationary atoms with density ρ.
The ensemble is dense enough for the usual condition for homogenization, viz.
ρλ3≫1, to be reached. Introducing the coherent and incoherent
scattered powers, we define two criteria to define the homogenization regime.
We find that when the excitation field is tuned in a broad frequency range
around the resonance, none of the criteria for homogenization is fulfilled,
meaning that the condition ρλ3≫1 is not sufficient to
characterize the homogenized regime around the atomic resonance. We interpret
these results as a consequence of the light-induced dipole-dipole interactions
between the atoms, which implies a description of scattering in terms of
collective modes rather than as a sequence of individual scattering events.
Finally, we show that, although homogenization can never be reached for a dense
ensemble of randomly positioned laser-cooled atoms around resonance, it becomes
possible if one introduces spatial correlations in the positions of the atoms
or non-radiative losses, such as would be the case for organic molecules or
quantum dots coupled to a phonon bath.Comment: 9 pages, 5 figures. Corrected mistakes in reference