330 research outputs found

    The warm interstellar medium around the Cygnus Loop

    Get PDF
    Observations of the oxygen lines [OII]3729 and [OIII]5007 in the medium immediately beyond the Cygnus Loop supernova remnant were carried out with the scanning Fabry-P\'erot spectrophotometer ESOP. Both lines were detected in three different directions - east, northeast and southwest - and up to a distance of 15 pc from the shock front. The ionized medium is in the immediate vicinity of the remnant, as evinced by the smooth brightening of both lines as the adiabatic shock transition (defined by the X-ray perimeter) is crossed. These lines are usually brighter around the Cygnus Loop than in the general background in directions where the galactic latitude is above 5 degrees. There is also marginal (but significant) evidence that the degree of ionization is somewhat larger around the Cygnus Loop. We conclude that the energy necessary to ionize this large bubble of gas could have been supplied by an O8 or O9 type progenitor or the particles heated by the expanding shock front. The second possibility, though highly atractive, would have to be assessed by extensive modelling.Comment: 18 pages, 8 figures, ApJ 512 in pres

    XMM-Newton observations of the supernova remnant RX J1713.7-3946 and its central source

    Get PDF
    We present new results from the observations of the supernova remnant (SNR) RX J1713.7–3946 (also G347.3–0.5) performed in five distinct pointings with the EPIC instrument on board the satellite XMM-Newton. RX J1713.7–3946 is a shelltype SNR dominated by synchrotron radiation in the X-rays. Its emission (emission measure and photon index) as well as the absorption along the line-of-sight has been characterized over the entire SNR. The X-ray mapping of the absorbing column density has revealed strong well-constrained variations (0.4 × 1022 cm−2 ≤ NH ≤ 1.1 × 1022 cm−2) and, particularly, a strong absorption in the southwest. Moreover, there are several clues indicating that the shock front of RX J1713.7–3946 is impacting the clouds responsible for the absorption as revealed for instance by the positive correlation between X-ray absorption and X-ray brightness along the western rims. The CO and H observations show that the inferred cumulative absorbing column densities are in excellent agreement with the X-ray findings in different parts of the remnant on condition that the SNR lies at a distance of 1.3 ± 0.4 kpc, probably in the Sagittarius galactic arm, instead of the commonly-accepted value of 6 kpc. An excess in the CO emission is found in the southwest suggesting that the absorption is due to molecular clouds. A search for OH masers in the southwestern region has been unsuccessful, possibly due to the low density of the clouds. The X-ray mapping of the photon index has also revealed strong variations (1.8 ≤ Γ ≤ 2.6). The spectrum is steep in the faint central regions and flat at the presumed shock locations, particularly in the southeast. Nevertheless, the regions where the shock impacts molecular clouds have a steeper spectrum than those where the shock propagates into a low density medium. The search for the thermal emission in RX J1713.7–3946 has been unsuccessful leading to a number density upper limit of 2 × 10−2 cm−3 in the ambient medium. This low density corresponds to a reasonable kinetic energy of the explosion provided that the remnant is less than a few thousand years old. A scenario based on a modified ambient medium due to the effect of a progenitor stellar wind is proposed and leads to an estimate of RX J1713.7–3946’s progenitor mass between 12 and 16 M. The X-ray bright central point source 1WGA J1713.4–3949 detected at the center of SNR RX J1713.7–3946 shows spectral properties very similar to those of the Compact Central Objects found in SNRs and consistent in terms of absorption with that of the central diffuse X-ray emission arising from the SNR. It is highly probable that the point source 1WGA J1713.4–3949 is the compact relic of RX J1713.7–3946’s supernova progenitor.Fil: Cassam Chenaï, G.. Centre D; FranciaFil: Decourchelle, A.. Centre D; FranciaFil: Ballet, J.;. Centre D; FranciaFil: Sauvageot, J. L.. Centre D; FranciaFil: Dubner, Gloria Mabel. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Giacani, Elsa Beatriz. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentin

    A2163: Merger events in the hottest Abell galaxy cluster II. Subcluster accretion with galaxy-gas separation

    Full text link
    Located at z = 0.203, A2163 is a rich galaxy cluster with an intra-cluster medium (ICM) that exhibits extraordinary properties, including an exceptionally high X-ray luminosity, average temperature, and a powerful and extended radio halo. The irregular and complex morphology of its gas and galaxy structure suggests that this cluster has recently undergone major merger events that involve two or more cluster components. In this paper, we study the gas structure and dynamics by means of spectral-imaging analysis of X-ray data obtained from XMM-Newton and Chandra observations. From the evidence of a cold front, we infer the westward motion of a cool core across the E-W elongated atmosphere of the main cluster A2163-A. Located close to a galaxy over-density, this gas 'bullet' appears to have been spatially separated from its galaxy (and presumably dark matter component) as a result of high-velocity accretion. From gas brightness and temperature profile analysis performed in two opposite regions of the main cluster, we show that the ICM has been adiabatically compressed behind the crossing 'bullet' possibly because of shock heating, leading to a strong departure of the ICM from hydrostatic equilibrium in this region. Assuming that the mass estimated from the Yx proxy best indicates the overall mass of the system and that the western cluster sector is in approximate hydrostatic equilibrium before subcluster accretion, we infer a merger scenario between two subunits of mass ratio 1:4, leading to a present total system mass of M500 1.9×1015M\propto 1.9 \times 1015 M_{\odot}. The exceptional properties of A2163 present various similarities with those of 1E0657-56, the so-called 'bullet-cluster'. These similarities are likely to be related to a comparable merger scenario.Comment: A&A, in pres

    XMM-Newton observation of SNR RX J1713.7-3946

    Full text link
    We present the first results of the observations of the supernova remnant RX J1713.7-3946 (also G347.3-0.5) obtained with the EPIC instrument on board the XMM-Newton satellite. We show a 5 pointings mosaiced image of the X-ray synchrotron emission. We characterize this emission by mapping its spectral parameters (absorbing column density NH and photon index). The synchrotron spectrum is flat at the shock and steep in the interior of the remnant. NH is well correlated with the X-ray brightness. A strong NH is found in the southwest rim of RX J1713.7-3946. We suggest that the SNR is interacting with a HI region there.Comment: 4 pages, 4 figures, To appear in "Young Neutron Stars and Their Environments" (IAU Symposium 218, ASP Conference Proceedings), eds F. Camilo and B. M. Gaensle

    Fredholm Modules on P.C.F. Self-Similar Fractals and their Conformal Geometry

    Full text link
    The aim of the present work is to show how, using the differential calculus associated to Dirichlet forms, it is possible to construct Fredholm modules on post critically finite fractals by regular harmonic structures. The modules are d-summable, the summability exponent d coinciding with the spectral dimension of the generalized laplacian operator associated with the regular harmonic structures. The characteristic tools of the noncommutative infinitesimal calculus allow to define a d-energy functional which is shown to be a self-similar conformal invariant.Comment: 16 page

    A planar calculus for infinite index subfactors

    Full text link
    We develop an analog of Jones' planar calculus for II_1-factor bimodules with arbitrary left and right von Neumann dimension. We generalize to bimodules Burns' results on rotations and extremality for infinite index subfactors. These results are obtained without Jones' basic construction and the resulting Jones projections.Comment: 56 pages, many figure
    corecore