14 research outputs found

    Emotional design and human-robot interaction

    Get PDF
    Recent years have shown an increase in the importance of emotions applied to the Design field - Emotional Design. In this sense, the emotional design aims to elicit (e.g., pleasure) or prevent (e.g., displeasure) determined emotions, during human product interaction. That is, the emotional design regulates the emotional interaction between the individual and the product (e.g., robot). Robot design has been a growing area whereby robots are interacting directly with humans in which emotions are essential in the interaction. Therefore, this paper aims, through a non-systematic literature review, to explore the application of emotional design, particularly on Human-Robot Interaction. Robot design features (e.g., appearance, expressing emotions and spatial distance) that affect emotional design are introduced. The chapter ends with a discussion and a conclusion.info:eu-repo/semantics/acceptedVersio

    The development and maintenance of the mononuclear phagocyte system of the chick is controlled by signals from the macrophage colony-stimulating factor (CSF1) receptor

    Get PDF
    BACKGROUND: Macrophages have many functions in development and homeostasis as well as innate immunity. Recent studies in mammals suggest that cells arising in the yolk sac give rise to self-renewing macrophage populations that persist in adult tissues. Macrophage proliferation and differentiation is controlled by macrophage colony-stimulating factor (CSF1) and interleukin 34 (IL34), both agonists of the CSF1 receptor (CSF1R). In the current manuscript we describe the origin, function and regulation of macrophages, and the role of CSF1R signaling during embryonic development, using the chick as a model. RESULTS: Based upon RNA-sequencing comparison to bone marrow-derived macrophages grown in CSF1, we show that embryonic macrophages contribute around 2% of the total embryo RNA in day 7 chick embryos, and have similar gene expression profiles to bone marrow-derived macrophages. To explore the origins of embryonic and adult macrophages, we injected Hamburger-Hamilton stage 16 to 17 chick embryos with either yolk sac-derived blood cells, or bone marrow cells from EGFP(+) donors. In both cases, the transferred cells gave rise to large numbers of EGFP(+) tissue macrophages in the embryo. In the case of the yolk sac, these cells were not retained in hatched birds. Conversely, bone marrow EGFP(+) cells gave rise to tissue macrophages in all organs of adult birds, and regenerated CSF1-responsive marrow macrophage progenitors. Surprisingly, they did not contribute to any other hematopoietic lineage. To explore the role of CSF1 further, we injected embryonic or hatchling CSF1R-reporter transgenic birds with a novel chicken CSF1-Fc conjugate. In both cases, the treatment produced a large increase in macrophage numbers in all tissues examined. There were no apparent adverse effects of chicken CSF1-Fc on embryonic or post-hatch development, but there was an unexpected increase in bone density in the treated hatchlings. CONCLUSIONS: The data indicate that the yolk sac is not the major source of macrophages in adult birds, and that there is a macrophage-restricted, self-renewing progenitor cell in bone marrow. CSF1R is demonstrated to be limiting for macrophage development during development in ovo and post-hatch. The chicken provides a novel and tractable model to study the development of the mononuclear phagocyte system and CSF1R signaling. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12915-015-0121-9) contains supplementary material, which is available to authorized users

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Doxorubicin and Daunorubicin Induce Processing and Release of Interleukin-1β through Activation of the NLRP3 Inflammasome

    No full text
    Anthracyclines including doxorubicin and daunorubicin are commonly used for the treatment of both hematologic and solid tumors. Dose related adverse effects often limit the effectiveness of anthracyclines in chemotherapy. Drug-related systemic inflammation mediated by interleukin-1beta (IL-1β) has been implicated in contributing to these adverse effects. The molecular mechanisms underlying anthracycline-mediated expression and IL-1β release are not understood. Elucidating the molecular basis by which anthracyclines upregulate IL-1β activity may present opportunities to decrease the inflammatory consequences of these drugs. Here we demonstrate that doxorubicin induces a systemic increase in IL-1β and other inflammatory cytokines, chemokines and growth factors including TNFα, IL-6, Gro-α/CXCL1, CCL2/MCP-1, granulocyte colony stimulating factor (GCSF) and CXCL10/IP-10. Studies with IL-1R-deficient mice demonstrate that IL-1 signaling plays a role in doxorubicin-induced increases in IL-6 and GCSF. In vitro studies with doxorubicin and daunorubicin failed to induce expression of pro-IL-1β in unprimed murine bone marrow-derived macrophages (BMDM) but enhanced the expression of pro-IL-1β in BMDM that had previously been primed with LPS. Furthermore, doxorubicin and daunorubicin induced the processing and release of IL-1β from LPS-primed BMDM by providing danger signals that lead to assembly and activation of the inflammasome. The release of IL-1β required the expression of ASC, caspase-1 and NLRP3, demonstrating that doxorubicin and daunorubicin-induced inflammation is mediated by the NLRP3 inflammasome. As with other agents that induce activation of the NLRP3 inflammasome, the ability of doxorubicin to provide proinflammatory danger signals was inhibited by co-treatment of cells with ROS inhibitors or by incubating cells in high extracellular potassium. These studies suggest that proinflammatory responses to anthracycline chemotherapeutic agents are mediated, at least in part, by promoting the processing and release of IL-1β, and that some of the adverse inflammatory consequences that complicate chemotherapy with anthracyclines may be reduced by suppressing the actions of IL-1β

    Doxorubicin and Daunorubicin Induce Processing and Release of Interleukin-1β through Activation of the NLRP3 Inflammasome

    No full text
    Anthracyclines including doxorubicin and daunorubicin are commonly used for the treatment of both hematologic and solid tumors. Dose related adverse effects often limit the effectiveness of anthracyclines in chemotherapy. Drug-related systemic inflammation mediated by interleukin-1beta (IL-1β) has been implicated in contributing to these adverse effects. The molecular mechanisms underlying anthracycline-mediated expression and IL-1β release are not understood. Elucidating the molecular basis by which anthracyclines upregulate IL-1β activity may present opportunities to decrease the inflammatory consequences of these drugs. Here we demonstrate that doxorubicin induces a systemic increase in IL-1β and other inflammatory cytokines, chemokines and growth factors including TNFα, IL-6, Gro-α/CXCL1, CCL2/MCP-1, granulocyte colony stimulating factor (GCSF) and CXCL10/IP-10. Studies with IL-1R-deficient mice demonstrate that IL-1 signaling plays a role in doxorubicin-induced increases in IL-6 and GCSF. In vitro studies with doxorubicin and daunorubicin failed to induce expression of pro-IL-1β in unprimed murine bone marrow-derived macrophages (BMDM) but enhanced the expression of pro-IL-1β in BMDM that had previously been primed with LPS. Furthermore, doxorubicin and daunorubicin induced the processing and release of IL-1β from LPS-primed BMDM by providing danger signals that lead to assembly and activation of the inflammasome. The release of IL-1β required the expression of ASC, caspase-1 and NLRP3, demonstrating that doxorubicin and daunorubicin-induced inflammation is mediated by the NLRP3 inflammasome. As with other agents that induce activation of the NLRP3 inflammasome, the ability of doxorubicin to provide proinflammatory danger signals was inhibited by co-treatment of cells with ROS inhibitors or by incubating cells in high extracellular potassium. These studies suggest that proinflammatory responses to anthracycline chemotherapeutic agents are mediated, at least in part, by promoting the processing and release of IL-1β, and that some of the adverse inflammatory consequences that complicate chemotherapy with anthracyclines may be reduced by suppressing the actions of IL-1β

    Mouse Model of Hemolytic-Uremic Syndrome Caused by Endotoxin-Free Shiga Toxin 2 (Stx2) and Protection from Lethal Outcome by Anti-Stx2 Antibody▿

    Get PDF
    Hemolytic-uremic syndrome (HUS) results from infection by Shiga toxin (Stx)-producing Escherichia coli and is the most common cause of acute renal failure in children. We have developed a mouse model of HUS by administering endotoxin-free Stx2 in multiple doses over 7 to 8 days. At sacrifice, moribund animals demonstrated signs of HUS: increased blood urea nitrogen and serum creatinine levels, proteinuria, deposition of fibrin(ogen), glomerular endothelial damage, hemolysis, leukocytopenia, and neutrophilia. Increased expression of proinflammatory chemokines and cytokines in the sera of Stx2-treated mice indicated a systemic inflammatory response. Currently, specific therapeutics for HUS are lacking, and therapy for patients is primarily supportive. Mice that received 11E10, a monoclonal anti-Stx2 antibody, 4 days after starting injections of Stx2 recovered fully, displaying normal renal function and normal levels of neutrophils and lymphocytes. In addition, these mice showed decreased fibrin(ogen) deposition and expression of proinflammatory mediators compared to those of Stx2-treated mice in the absence of antibody. These results indicate that, when performed during progression of HUS, passive immunization of mice with anti-Stx2 antibody prevented the lethal effects of Stx2
    corecore