17 research outputs found

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Design of a VR-based upper limb gross motor and fine motor task platform for post-stroke survivors

    No full text
    by Saurav Kumar, Adyasha Dash, Dhaval Shashikantbhai Solanki and Uttama Lahir

    Insurance market density and economic growth in Eurozone countries: the granger causality approach

    No full text
    Abstract Background This study examines the relationship between insurance market density (IMD) and economic growth. Methods We employed Granger causality technique in 19 Eurozone countries for the period 1980-2014. We use three different indicators of IMD, namely life insurance density, non-life insurance density, and total insurance density. We particularly emphasize on whether Granger causality runs between IMD and economic growth both ways, one way, or not at all. Results Our empirical result recognizes the presence of both unidirectional and bidirectional causality between insurance market density and economic growth. However, these results are mostly non-uniform across Eurozone countries. Conclusions This study holds important policy implications- economic policies should recognize the differences in the insurance market density and economic growth in order to maintain sustainable economic growth in the Eurozone

    Insurance market penetration and economic growth in Eurozone countries: Time series evidence on causality

    No full text
    This paper examines the causal relationship between insurance market penetration and per capita economic growth in 19 Eurozone countries for the period 1980–2014. We use three different indicators of insurance market penetration (IMP), namely life insurance penetration, non-life insurance penetration, and total (both life and non-life) insurance penetration. We particularly emphasize on whether Granger causality exists between these variables both ways, one way, or not at all. Our empirical results perceive both unidirectional and bidirectional causality between IMP and per capita economic growth. However, these results are mostly non-uniform across the Eurozone countries during this selected period. The policy implication is that the economic policies should recognize the differences in the insurance market and per capita economic growth in order to maintain sustainable growth in the Eurozone. Keywords: IMP, Per capita economic growth, Granger causality, Eurozone countries, JEL codes: L96, O32, O33, O4

    Predictive healthcare modeling for early pandemic assessment leveraging deep auto regressor neural prophet

    No full text
    Abstract In this paper, NeuralProphet (NP), an explainable hybrid modular framework, enhances the forecasting performance of pandemics by adding two neural network modules; auto-regressor (AR) and lagged-regressor (LR). An advanced deep auto-regressor neural network (Deep-AR-Net) model is employed to implement these two modules. The enhanced NP is optimized via AdamW and Huber loss function to perform multivariate multi-step forecasting contrast to Prophet. The models are validated with COVID-19 time-series datasets. The NP’s efficiency is studied component-wise for a long-term forecast for India and an overall reduction of 60.36% and individually 34.7% by AR-module, 53.4% by LR-module in MASE compared to Prophet. The Deep-AR-Net model reduces the forecasting error of NP for all five countries, on average, by 49.21% and 46.07% for short-and-long-term, respectively. The visualizations confirm that forecasting curves are closer to the actual cases but significantly different from Prophet. Hence, it can develop a real-time decision-making system for highly infectious diseases

    A Framework for Detecting Thyroid Cancer from Ultrasound and Histopathological Images Using Deep Learning, Meta-Heuristics, and MCDM Algorithms

    No full text
    Computer-assisted diagnostic systems have been developed to aid doctors in diagnosing thyroid-related abnormalities. The aim of this research is to improve the diagnosis accuracy of thyroid abnormality detection models that can be utilized to alleviate undue pressure on healthcare professionals. In this research, we proposed deep learning, metaheuristics, and a MCDM algorithms-based framework to detect thyroid-related abnormalities from ultrasound and histopathological images. The proposed method uses three recently developed deep learning techniques (DeiT, Swin Transformer, and Mixer-MLP) to extract features from the thyroid image datasets. The feature extraction techniques are based on the Image Transformer and MLP models. There is a large number of redundant features that can overfit the classifiers and reduce the generalization capabilities of the classifiers. In order to avoid the overfitting problem, six feature transformation techniques (PCA, TSVD, FastICA, ISOMAP, LLE, and UMP) are analyzed to reduce the dimensionality of the data. There are five different classifiers (LR, NB, SVC, KNN, and RF) evaluated using the 5-fold stratified cross-validation technique on the transformed dataset. Both datasets exhibit large class imbalances and hence, the stratified cross-validation technique is used to evaluate the performance. The MEREC-TOPSIS MCDM technique is used for ranking the evaluated models at different analysis stages. In the first stage, the best feature extraction and classification techniques are chosen, whereas, in the second stage, the best dimensionality reduction method is evaluated in wrapper feature selection mode. Two best-ranked models are further selected for the weighted average ensemble learning and features selection using the recently proposed meta-heuristics FOX-optimization algorithm. The PCA+FOX optimization-based feature selection + random forest model achieved the highest TOPSIS score and performed exceptionally well with an accuracy of 99.13%, F2-score of 98.82%, and AUC-ROC score of 99.13% on the ultrasound dataset. Similarly, the model achieved an accuracy score of 90.65%, an F2-score of 92.01%, and an AUC-ROC score of 95.48% on the histopathological dataset. This study exploits the combination novelty of different algorithms in order to improve the thyroid cancer diagnosis capabilities. This proposed framework outperforms the current state-of-the-art diagnostic methods for thyroid-related abnormalities in ultrasound and histopathological datasets and can significantly aid medical professionals by reducing the excessive burden on the medical fraternity

    Water Quality of Four Major Lakes in Mississippi, USA: Impacts on Human and Aquatic Ecosystem Health

    No full text
    Harmful algal blooms (HABs), harmful microorganisms (pathogens) and toxic metals represent three major agents of water quality deterioration. Water quality of three northern lakes (Sardis, Enid, and Grenada) and a central lake (Ross Barnett Reservoir) of Mississippi, USA were examined in this study. While all these lakes are heavily used for recreational purposes, the Ross Barnett Reservoir serves additionally as the primary water supply for the City of Jackson, the capital city of Mississippi. The main goal of this study was to comprehensively assess the water quality of these lakes employing field and satellite data, and evaluate the potential human and aquatic health impacts. A time-series of true color images derived from satellite data indicated that algal blooms have been a recurring phenomenon in these lakes. Cyanobacteria, the algal group that predominantly occur in freshwater and form toxic blooms, were always present in these lakes and were most abundant on many occasions. The most toxic cyanotoxin, microcystin-LR, was found in all lakes, and its concentrations exceeded federal drinking water guidelines for children under six years of age many times. Potential bioaccumulation and biomagnification of microcystin-LR may pose serious risk to the aquatic ecosystem and human health including adults. Nutrient measurements indicated that all four lakes were eutrophic. Among bacterial populations, total coliforms and enterococci exceeded guideline values on several occasions. Arsenic, cadmium, chromium, and lead were found in the water of all the lakes, with arsenic exceeding the guideline values at two sites in Ross Barnett Reservoir. While it is apparent from this study that these lakes face many water quality issues, data across all seasons will be required to document potential trends and to devise management strategies. Use of remote sensing technology is recommended to monitor some of the water quality parameters such as suspended particulate matter and algal blooms, especially cyanobacterial blooms
    corecore