18 research outputs found

    Dynamic interactions between anterior insula and anterior cingulate cortex link perceptual features and heart rate variability during movie viewing

    Get PDF
    AbstractThe dynamic integration of sensory and bodily signals is central to adaptive behaviour. Although the anterior cingulate cortex (ACC) and the anterior insular cortex (AIC) play key roles in this process, their context-dependent dynamic interactions remain unclear. Here, we studied the spectral features and interplay of these two brain regions using high-fidelity intracranial-EEG recordings from five patients (ACC: 13 contacts, AIC: 14 contacts) acquired during movie viewing with validation analyses performed on an independent resting intracranial-EEG dataset. ACC and AIC both showed a power peak and positive functional connectivity in the gamma (30–35 Hz) frequency while this power peak was absent in the resting data. We then used a neurobiologically informed computational model investigating dynamic effective connectivity asking how it linked to the movie’s perceptual (visual, audio) features and the viewer’s heart rate variability (HRV). Exteroceptive features related to effective connectivity of ACC highlighting its crucial role in processing ongoing sensory information. AIC connectivity was related to HRV and audio emphasising its core role in dynamically linking sensory and bodily signals. Our findings provide new evidence for complementary, yet dissociable, roles of neural dynamics between the ACC and the AIC in supporting brain-body interactions during an emotional experience

    Buli dan Hubungannya Dengan Prestasi Akademik di Sekolah Berasrama Penuh di Kedah

    Get PDF
    The purpose of this study is to describe gangterism in relation to bullying behavior and determine its relationship with students' academic achievement in three residential schools (SBP) in Kedah. The dimensions of bullying studied are types of bullying behavior, types of bullies and victims, places where bullying frequently happened either direct or indirect bullying and bullies and victims emotions and feelings. It is also attempted to identify the relationship between dimensions of bullying behavior and students' academic achievement. The samples of study are students from Form One to Form Five of the three selected SBPs in Kedah. Descriptive analysis and Pearson Correlation (r) are used for data analysis. Results showed that bullying incidents occured mainly in the hostel, cafeteria and bathroom or toilet more frequently compared to other places. More boys and groups of boys were involved in bullying compared to girls and the occurrence is more of indirect bullying. However, there are responses indicating that direct physical bully do exist though at a low rate but this call for appropriate action before the incident is beyond the control of the authority. Result of correlation analysis showed academic achievement was not significantly related with bullying and victims of bullying. Nevertheless, a total of 77 percent of 396 respondents belong to the hogh achievers group compared to 23 percent who belong to the low achievers group

    Automatic and Controlled Semantic Retrieval : TMS Reveals Distinct Contributions of Posterior Middle Temporal Gyrus and Angular Gyrus

    Get PDF
    UNLABELLED: Semantic retrieval involves both (1) automatic spreading activation between highly related concepts and (2) executive control processes that tailor this activation to suit the current context or goals. Two structures in left temporoparietal cortex, angular gyrus (AG) and posterior middle temporal gyrus (pMTG), are thought to be crucial to semantic retrieval and are often recruited together during semantic tasks; however, they show strikingly different patterns of functional connectivity at rest (coupling with the "default mode network" and "frontoparietal control system," respectively). Here, transcranial magnetic stimulation (TMS) was used to establish a causal yet dissociable role for these sites in semantic cognition in human volunteers. TMS to AG disrupted thematic judgments particularly when the link between probe and target was strong (e.g., a picture of an Alsatian with a bone), and impaired the identification of objects at a specific but not a superordinate level (for the verbal label "Alsatian" not "animal"). In contrast, TMS to pMTG disrupted thematic judgments for weak but not strong associations (e.g., a picture of an Alsatian with razor wire), and impaired identity matching for both superordinate and specific-level labels. Thus, stimulation to AG interfered with the automatic retrieval of specific concepts from the semantic store while stimulation of pMTG impaired semantic cognition when there was a requirement to flexibly shape conceptual activation in line with the task requirements. These results demonstrate that AG and pMTG make a dissociable contribution to automatic and controlled aspects of semantic retrieval. SIGNIFICANCE STATEMENT: We demonstrate a novel functional dissociation between the angular gyrus (AG) and posterior middle temporal gyrus (pMTG) in conceptual processing. These sites are often coactivated during neuroimaging studies using semantic tasks, but their individual contributions are unclear. Using transcranial magnetic stimulation and tasks designed to assess different aspects of semantics (item identity and thematic matching), we tested two alternative theoretical accounts. Neither site showed the pattern expected for a "thematic hub" (i.e., a site storing associations between concepts) since stimulation disrupted both tasks. Instead, the data indicated that pMTG contributes to the controlled retrieval of conceptual knowledge, while AG is critical for the efficient automatic retrieval of specific semantic information

    Naturalistic Stimuli in Neuroscience: Critically Acclaimed

    No full text
    Cognitive neuroscience has traditionally focused on simple tasks, presented sparsely and using abstract stimuli. While this approach has yielded fundamental insights into functional specialisation in the brain, its ecological validity remains uncertain. Do these tasks capture how brains function ‘in the wild’, where stimuli are dynamic, multimodal, and crowded? Ecologically valid paradigms that approximate real life scenarios, using stimuli such as films, spoken narratives, music, and multiperson games emerged in response to these concerns over a decade ago. We critically appraise whether this approach has delivered on its promise to deliver new insights into brain function. We highlight the challenges, technological innovations, and clinical opportunities that are required should this field meet its full potential

    Movie viewing elicits rich and reliable brain state dynamics

    No full text
    Adaptive brain function requires that sensory impressions of the social and natural milieu are dynamically incorporated into intrinsic brain activity. While dynamic switches between brain states have been well characterised in resting state acquisitions, the remodelling of these state transitions by engagement in naturalistic stimuli remains poorly understood. Here, we show that the temporal dynamics of brain states, as measured in fMRI, are reshaped from predominantly bistable transitions between two relatively indistinct states at rest, toward a sequence of well-defined functional states during movie viewing whose transitions are temporally aligned to specific features of the movie. The expression of these brain states covaries with different physiological states and reflects subjectively rated engagement in the movie. In sum, a data-driven decoding of brain states reveals the distinct reshaping of functional network expression and reliable state transitions that accompany the switch from resting state to perceptual immersion in an ecologically valid sensory experience

    Distinct cerebellar contributions to cognitive-perceptual dynamics during natural viewing

    No full text
    The crucial role of the cerebellum in motor learning and coordination is very well known. Considerable interest has recently shifted toward its contribution to nonmotor tasks, such as working memory, emotion, and language. However, the cognitive role and functional subdivisions of the cerebellum, particularly in dynamic, ecologically realistic contexts, are not yet established. By analyzing functional neuroimaging data acquired while participants viewed a short dramatic movie, we found that posterior and inferior cerebellar regions are reliably engaged in dynamic perceptual and affective processes with no explicit motor component. These cerebellar regions show significant relevance to visual salience and unexpected turning points of the movie. Our results demonstrate that distinct functional subdivisions of the cerebellum are robustly engaged in real-life cognitive processes, playing specific roles through a dynamic interaction with higher order regions in the cerebral cortex

    Data-driven analysis of facial thermal responses and multimodal physiological consistency among subjects

    No full text
    Abstract Facial infra-red imaging (IRI) is a contact-free technique complimenting the traditional psychophysiological measures to characterize physiological profile. However, its full potential in affective research is arguably unmet due to the analytical challenges it poses. Here we acquired facial IRI data, facial expressions and traditional physiological recordings (heart rate and skin conductance) from healthy human subjects whilst they viewed a 20-min-long unedited emotional movie. We present a novel application of motion correction and the results of spatial independent component analysis of the thermal data. Three distinct spatial components are recovered associated with the nose, the cheeks and respiration. We first benchmark this methodology against a traditional nose-tip region-of-interest based technique showing an expected similarity of signals extracted by these methods. We then show significant correlation of all the physiological responses across subjects, including the thermal signals, suggesting common dynamic shifts in emotional state induced by the movie. In sum, this study introduces an innovative approach to analyse facial IRI data and highlights the potential of thermal imaging to robustly capture emotion-related changes induced by ecological stimuli
    corecore