21 research outputs found

    Emerging Roles of CREB-Regulated Transcription Coactivators in Brain Physiology and Pathology.

    Get PDF
    The brain has the ability to sense, coordinate, and respond to environmental changes through biological processes involving activity-dependent gene expression. cAMP-response element binding protein (CREB)-regulated transcription coactivators (CRTCs) have recently emerged as novel transcriptional regulators of essential biological functions, while their deregulation is linked to age-related human diseases. In the brain, CRTCs are unique signaling factors that act as sensors and integrators of hormonal, metabolic, and neural signals contributing to brain plasticity and brain-body communication. In this review, we focus on the regulatory mechanisms and functions of CRTCs in brain metabolism, lifespan, circadian rhythm, and synaptic mechanisms underlying memory and emotion. We also discuss how CRTCs deregulation in cognitive and emotional disorders may provide the basis for potential clinical and therapeutic applications in neurodegenerative and psychiatric diseases

    Molecular and functional interaction between GPR18 and cannabinoid CB2 G-protein-coupled receptors. Relevance in neurodegenerative diseases

    No full text
    GPR18, still considered an orphan receptor, may respond to endocannabinoids, whose canonical receptors are CB1 and CB2. GPR18 and CB2 receptors share a role in peripheral immune response regulation and are co-expressed in microglia, which are immunocompetent cells in the central nervous system (CNS). We aimed at identifying heteroreceptor complexes formed by GPR18 and CB1R or CB2R in resting and activated microglia. Receptor-receptor interaction was assessed using energy-transfer approaches, and receptor function by determining cAMP levels and ERK1/2 phosphorylation in heterologous cells and primary cultures of microglia. Heteroreceptor identification in primary cultures of microglia was achieved by in situ proximity ligation assays. Energy transfer results showed interaction of GPR18 with CB2R but not with CB1R. CB2-GPR18 heteroreceptor complexes displayed particular functional properties (heteromer prints) often consisting of negative cross-talk (activation of one receptor reduces signaling arising from the partner receptor) and cross-antagonism (the response of one of the receptors is blocked by a selective antagonist of the partner receptor). Activated microglia showed the heteromer print (negative cross-talk and bidirectional cross-antagonism) and increased expression of CB2R and GPR18. Due to the important role of CB2R in neuroprotection, we further investigated heteroreceptor occurrence in primary cultures of microglia from transgenic mice overexpressing human APPSw,Ind, an Alzheimer's disease model. Microglial cells from transgenic mice showed the heteromer print and functional interactions that were similar to those found in cells from wild-type animals that were activated by treatment with lipopolysaccharide and interferon-É€. Our results show that GPR18 and its heteromers may play important roles in neurodegenerative processes
    corecore