16,038 research outputs found

    Micrometre-scale refrigerators

    Get PDF
    A superconductor with a gap in the density of states or a quantum dot with discrete energy levels is a central building block in realizing an electronic on-chip cooler. They can work as energy filters, allowing only hot quasiparticles to tunnel out from the electrode to be cooled. This principle has been employed experimentally since the early 1990s in investigations and demonstrations of micrometre-scale coolers at sub-kelvin temperatures. In this paper, we review the basic experimental conditions in realizing the coolers and the main practical issues that are known to limit their performance. We give an update of experiments performed on cryogenic micrometre-scale coolers in the past five years

    A new camera for high-resolution infrared imaging of works of art

    Get PDF
    A new camera – SIRIS (scanning infrared imaging system) – developed at the National Gallery in London allows high-resolution images to be made in the near infrared region (900–1700 nm). The camera is based on a commercially available 320 × 256 pixel indium gallium arsenide area array sensor. This relatively small sensor is moved across the focal plane of the camera using two orthogonal translation stages to give images of c. 5000 × 5000 pixels. The main advantages of the SIRIS camera over scanning infrared devices or sequential image capture and mosaic assembly are its comparative portability and rapid image acquisition – making a 5000 × 5000 pixel image takes less than 20 minutes. The SIRIS camera can operate at a range of resolutions; from around 2.5 pixels per millimetre over an area of up to 2 × 2 m to 10 pixels per millimetre when examining an area measuring 0.5 × 0.5 m. The development of the mechanical, optical and electronic components of the camera, including the design of a new lens, is described. The software used to control image capture and to assemble the individual frames into a seamless mosaic image is mentioned. The camera was designed primarily to examine underdrawings in paintings; preliminary results from test targets and paintings imaged in situ are presented and the quality of the images compared with those from other cameras currently used for this application

    SIRIS: a high resolution scanning infrared camera for examining paintings

    Get PDF
    The new SIRIS (Scanning InfraRed Imaging System) camera developed at the National Gallery in London allows highresolution images of paintings to be made in the near infrared region (900–1700 nm). Images of 5000 × 5000 pixels are made by moving a 320 × 256 pixel InGaAs array across the focal plane of the camera using two orthogonal translation stages. The great advantages of this camera over scanning infrared devices are its relative portability and that image acquisition is comparatively rapid – a full 5000 × 5000 pixel image can be made in around 20 minutes. The paper describes the development of the mechanical, optical and electronic components of the camera, including the design of a new lens. The software routines used to control image capture and to assemble the individual 320 × 256 pixel frames into a seamless mosaic image are also mentioned. The optics of the SIRIS camera have been designed so that the camera can operate at a range of resolutions; from around 2.5 pixels per millimetre on large paintings of up to 2000 × 2000 mm to 10 pixels per millimetre on smaller paintings or details of paintings measuring 500 × 500 mm. The camera is primarily designed to examine underdrawings in paintings; preliminary results from test targets and paintings are presented and the quality of the images compared with those from other cameras currently used in this field

    Magellan stereo images and Venusian geology

    Get PDF
    Areas of Venus imaged by Magellan radar with multiple viewing conditions provide unique data that will contribute to the solution of venusian geologic problems and provide a basis for quantitative comparison of venusian landforms with those on other planetary bodies. Three sets of images with different viewing conditions have been acquired: (1) left-looking with variable incidence angles (cycle 1 profile), (2) right-looking with nearly constant incidence angles (cycle 2 profile), and (3) left-looking with variable incidence angles that are almost always smaller than those in (1) (cycle 3 profiles). The unique data provided by paired images of the same scene with different incidence angles arises from image displacements caused by the relief of individual landforms at scales comparable to the ground-range and azimuth resolutions of the images. There are two aspects of the data: (1) Stereopsis achieved by simultaneous viewing of paired left-looking images of the same scene permits three-dimensional perception and interpretation of the morphologies of landforms at resolutions much finer than the altimetry footprints. (2) Measurements of differences of image displacements (parallax) on paired images with known imaging geometries provide quantitative estimates of the relief and shapes of landforms. The potential scientific contributions of the data can be grouped into two interrelated classes: (A) geologic mapping, analysis, and interpretation and (B) topical studies that involve topographic measurements. Stereopsis, without quantitative measurements, enhances geologic mapping, analysis, and interpretation of the rock units of Venus to a degree that cannot be overestimated. In geologic mapping, assemblages of landforms, assessments of backscatter and variations in backscatter, and fine-scale topography are used to define and characterize geologic map units that represent laterally continuous deposits or rock units. Stereopsis adds the important dimension of local relief for characterization of geologic units at a scale that is not possible with Magellan altimetry or products derived from the altimetry. Relative ages of the geologic units are determined using the well-known principles of superposition and intersection. Here, the perception of relief is invaluable because superposition relations among the geological units are more readily and clearly established. The recognition of folds, faults, and fault systems, regardless of their orientations, is facilitated with stereopsis so that sequences of deformation of the geologic units can be determined and structural analyses vastly improved. Shapes of landforms are readily perceived so that they can be properly interpreted. The end result of the mapping, analyses, and interpretations is a geologic history of Venus that includes the sequences of formation and deformation of various geologic units. Measurements of relief at the finest scale possible are necessary for numerous topical studies. Standard altimetry will provide the necessary information on the relief of most large landforms, but it tends to underestimate the relief of small landforms and distorts their shapes. Although special processing of the altimeter echoes improves the estimates of the relief and shapes of some landforms, there are uncertainties in the interpretations of the echoes. Examples of topical studies requiring measurements of relief are given

    A simple, efficient, and general treatment of the singularities in Hartree-Fock and exact-exchange Kohn-Sham methods for solids

    Full text link
    We present a general scheme for treating the integrable singular terms within exact exchange (EXX) Kohn-Sham or Hartree-Fock (HF) methods for periodic solids. We show that the singularity corrections for treating these divergencies depend only on the total number and the positions of k-points and on the lattice vectors, in particular the unit cell volume, but not on the particular positions of atoms within the unit cell. The method proposed here to treat the singularities constitutes a stable, simple to implement, and general scheme that can be applied to systems with arbitrary lattice parameters within either the EXX Kohn-Sham or the HF formalism. We apply the singularity correction to a typical symmetric structure, diamond, and to a more general structure, trans-polyacetylene. We consider the effect of the singularity corrections on volume optimisations and k-point convergence. While the singularity corrections clearly depends on the total number of k-points, it exhibits a remarkably small dependence upon the choice of the specific arrangement of the k-points.Comment: 24 pages, 5 Figures, re-submitted to Phys. Rev. B after revision

    Band structures of rare gas solids within the GW approximation

    Full text link
    Band structures for solid rare gases (Ne, Ar) have been calculated using the GW approximation. All electron and pseudopotential ab initio calculations were performed using Gaussian orbital basis sets and the dependence of particle-hole gaps and electron affinities on basis set and treatment of core electrons is investigated. All electron GW calculations have a smaller particle-hole gap than pseudopotential GW calculations by up to 0.2 eV. Quasiparticle electron and hole excitation energies, valence band widths and electron affinities are generally in very good agreement with those derived from optical absorption and photoemission measurements.Comment: 7 pages 1 figur

    A physics-based life prediction methodology for thermal barrier coating systems

    Full text link
    A novel mechanistic approach is proposed for the prediction of the life of thermal barrier coating (TBC) systems. The life prediction methodology is based on a criterion linked directly to the dominant failure mechanism. It relies on a statistical treatment of the TBC's morphological characteristics, non-destructive stress measurements and on a continuum mechanics framework to quantify the stresses that promote the nucleation and growth of microcracks within the TBC. The last of these accounts for the effects of TBC constituents' elasto-visco-plastic properties, the stiffening of the ceramic due to sintering and the oxidation at the interface between the thermally insulating yttria stabilized zirconia (YSZ) layer and the metallic bond coat. The mechanistic approach is used to investigate the effects on TBC life of the properties and morphology of the top YSZ coating, metallic low-pressure plasma sprayed bond coat and the thermally grown oxide. Its calibration is based on TBC damage inferred from non-destructive fluorescence measurements using piezo-spectroscopy and on the numerically predicted local TBC stresses responsible for the initiation of such damage. The potential applicability of the methodology to other types of TBC coatings and thermal loading conditions is also discussed

    Electronic structure of the molecule based magnet Cu PM(NO3)2 (H2O)2

    Full text link
    We present density functional calculations on the molecule based S=1/2 antiferromagnetic chain compound Cu PM(NO3)2 (H2O)2; PM = pyrimidine. The properties of the ferro- and antiferromagnetic state are investigated at the level of the local density approximation and with the hybrid functional B3LYP. Spin density maps illustrate the exchange path via the pyrimidine molecule which mediates the magnetism in the one-dimensional chain. The computed exchange coupling is antiferromagnetic and in reasonable agreement with the experiment. It is suggested that the antiferromagnetic coupling is due to the possibility of stronger delocalization of the charges on the nitrogen atoms, compared to the ferromagnetic case. In addition, computed isotropic and anisotropic hyperfine interaction parameters are compared with recent NMR experiments
    • …
    corecore