13,750 research outputs found
METEOSAT studies of clouds and radiation budget
Radiation budget studies of the atmosphere/surface system from Meteosat, cloud parameter determination from space, and sea surface temperature measurements from TIROS N data are all described. This work was carried out on the interactive planetary image processing system (IPIPS), which allows interactive manipulationion of the image data in addition to the conventional computational tasks. The current hardware configuration of IPIPS is shown. The I(2)S is the principal interactive display allowing interaction via a trackball, four buttons under program control, or a touch tablet. Simple image processing operations such as contrast enhancing, pseudocoloring, histogram equalization, and multispectral combinations, can all be executed at the push of a button
Mars: Seasonally variable radar reflectivity
Since reflectivity is a quantity characteristic of a given target at a particular geometry, the same (temporally unchanging) target examined by radar on different occasions should have the same reflectivity. Zisk and Mouginis-Mark noted that the average reflectivities in the Goldstone Mars data increased as the planet's S hemisphere passed from the late spring into early summer. The same data set was re-examined and the presence of the phenomenon of the apparent seasonal variability of radar reflectivity was confirmed. Two objections to these findings are addressed: (1) reflectivity variations may be present in the Goldstone Mars data as a result of an instrument/calibration error; and (2) the variations were introduced into the analysis through comparing reflectivities from two incompatible subsets of the data
PILOT: design and capabilities
The proposed design for PILOT is a general-purpose, wide-field 1 degree 2.4m,
f/10 Ritchey-Chretien telescope, with fast tip-tilt guiding, for use 0.5-25
microns. The design allows both wide-field and diffraction-limited use at these
wavelengths. The expected overall image quality, including median seeing, is
0.28-0.3" FWHM from 0.8-2.4 microns. Point source sensitivities are estimated.Comment: 4 pages, Proceedings of 2nd ARENA conference 'The Astrophysical
Science Cases at Dome C', Potsdam, 17-21 September 200
Luminosity Density of Galaxies and Cosmic Star Formation Rate from Lambda-CDM Hydrodynamical Simulations
We compute the cosmic star formation rate (SFR) and the rest-frame comoving
luminosity density in various pass-bands as a function of redshift using
large-scale \Lambda-CDM hydrodynamical simulations with the aim of
understanding their behavior as a function of redshift. To calculate the
luminosity density of galaxies, we use an updated isochrone synthesis model
which takes metallicity variations into account. The computed SFR and the
UV-luminosity density have a steep rise from z=0 to 1, a moderate plateau
between z=1 - 3, and a gradual decrease beyond z=3. The raw calculated results
are significantly above the observed luminosity density, which can be explained
either by dust extinction or the possibly inappropriate input parameters of the
simulation. We model the dust extinction by introducing a parameter f; the
fraction of the total stellar luminosity (not galaxy population) that is
heavily obscured and thus only appears in the far-infrared to sub-millimeter
wavelength range. When we correct our input parameters, and apply dust
extinction with f=0.65, the resulting luminosity density fits various
observations reasonably well, including the present stellar mass density, the
local B-band galaxy luminosity density, and the FIR-to-submm extragalactic
background. Our result is consistent with the picture that \sim 2/3 of the
total stellar emission is heavily obscured by dust and observed only in the
FIR. The rest of the emission is only moderately obscured which can be observed
in the optical to near-IR wavelength range. We also argue that the steep
falloff of the SFR from z=1 to 0 is partly due to the shock-heating of the
universe at late times, which produces gas which is too hot to easily condense
into star-forming regions.Comment: 25 pages, 6 figures. Accepted version in ApJ. Substantially revised
from the previous version. More emphasis on the comparison with various
observations and the hidden star formation by dust extinctio
Operating experience with four 200 kW Mod-0A wind turbine generators
The windpowered generator, Mod-0A, and its advantages and disadvantages, particularly as it affects reliability, are discussed. The machine performance with regard to power availability and power output is discussed
Band structures of rare gas solids within the GW approximation
Band structures for solid rare gases (Ne, Ar) have been calculated using the
GW approximation. All electron and pseudopotential ab initio calculations were
performed using Gaussian orbital basis sets and the dependence of particle-hole
gaps and electron affinities on basis set and treatment of core electrons is
investigated. All electron GW calculations have a smaller particle-hole gap
than pseudopotential GW calculations by up to 0.2 eV. Quasiparticle electron
and hole excitation energies, valence band widths and electron affinities are
generally in very good agreement with those derived from optical absorption and
photoemission measurements.Comment: 7 pages 1 figur
An Empirically Based Calculation of the Extragalactic Infrared Background
Using the excellent observed correlations among various infrared wavebands
with 12 and 60 micron luminosities, we calculate the 2-300 micron spectra of
galaxies as a function of luminosity. We then use 12 micron and 60 micron
galaxy luminosity functions derived from IRAS data, together with recent data
on the redshift evolution of galaxy emissivity, to derive a new, empirically
based IR background spectrum from stellar and dust emission in galaxies. Our
best estimate for the IR background is of order 2-3 nW/m^2/sr with a peak
around 200 microns reaching 6-8 nW/m^2/sr. Our empirically derived background
spectrum is fairly flat in the mid-IR, as opposed to spectra based on modeling
with discrete temperatures which exhibit a "valley" in the mid-IR. We also
derive a conservative lower limit to the IR background which is more than a
factor of 2 lower than our derived flux.Comment: 14 pages AASTeX, 2 .ps figures, the Astrophysical Journal, in pres
The temperature dependence of photo-elastic properties of cross-linked amorphous polyethylenes
Cross-linked samples of polyethylene were prepared by electron
irradiation of both high and low density polymers in the crystalline state.
A further cross-linked sample was obtained by curing a high density polyethylene
by reaction with dicumyl peroxide at 180°C. The stress-strain birefringence
relations were obtained, on specimens cut from these samples, at temperatures
between 130 and 250°C.
All samples showed a substantial decrease in stress-optical coefficient
with increasing degree of cross-linking and with increasing temperature. The
stress-optical properties at each temperature were extrapolated to zero degree
of cross-linking to give quantities characteristic of the Guassian network.
Comparison of these properties with Gaussian theory of the network leads to a
value of ca.1150 cals/mole for the difference in energy between trans and
gauche conformations of successive links of the polyethylene chain and also
indicates that the optical anisotropy of a - CH2 group in the elastomeric
state is more nearly given by Denbigh’s than by Bunn and Daubeny's polaris-abilities
- …