1,058 research outputs found

    Gene expression patterns that predict sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors in lung cancer cell lines and human lung tumors

    Get PDF
    BACKGROUND: Increased focus surrounds identifying patients with advanced non-small cell lung cancer (NSCLC) who will benefit from treatment with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI). EGFR mutation, gene copy number, coexpression of ErbB proteins and ligands, and epithelial to mesenchymal transition markers all correlate with EGFR TKI sensitivity, and while prediction of sensitivity using any one of the markers does identify responders, individual markers do not encompass all potential responders due to high levels of inter-patient and inter-tumor variability. We hypothesized that a multivariate predictor of EGFR TKI sensitivity based on gene expression data would offer a clinically useful method of accounting for the increased variability inherent in predicting response to EGFR TKI and for elucidation of mechanisms of aberrant EGFR signalling. Furthermore, we anticipated that this methodology would result in improved predictions compared to single parameters alone both in vitro and in vivo. RESULTS: Gene expression data derived from cell lines that demonstrate differential sensitivity to EGFR TKI, such as erlotinib, were used to generate models for a priori prediction of response. The gene expression signature of EGFR TKI sensitivity displays significant biological relevance in lung cancer biology in that pertinent signalling molecules and downstream effector molecules are present in the signature. Diagonal linear discriminant analysis using this gene signature was highly effective in classifying out-of-sample cancer cell lines by sensitivity to EGFR inhibition, and was more accurate than classifying by mutational status alone. Using the same predictor, we classified human lung adenocarcinomas and captured the majority of tumors with high levels of EGFR activation as well as those harbouring activating mutations in the kinase domain. We have demonstrated that predictive models of EGFR TKI sensitivity can classify both out-of-sample cell lines and lung adenocarcinomas. CONCLUSION: These data suggest that multivariate predictors of response to EGFR TKI have potential for clinical use and likely provide a robust and accurate predictor of EGFR TKI sensitivity that is not achieved with single biomarkers or clinical characteristics in non-small cell lung cancers

    Walking the tightrope: proteostasis and neurodegenerative disease

    Get PDF
    A characteristic of many neurodegenerative diseases, including Alzheimer\u27s disease (AD), Parkinson\u27s disease (PD), Huntington\u27s disease (HD), and amyotrophic lateral sclerosis (ALS), is the aggregation of specific proteins into protein inclusions and/or plaques in degenerating brains. While much of the aggregated protein consists of disease specific proteins, such as amyloid-β, α-synuclein, or superoxide dismutase1 (SOD1), many other proteins are known to aggregate in these disorders. Although the role of protein aggregates in the pathogenesis of neurodegenerative diseases remains unknown, the ubiquitous association of misfolded and aggregated proteins indicates that significant dysfunction in protein homeostasis (proteostasis) occurs in these diseases. Proteostasis is the concept that the integrity of the proteome is in fine balance and requires proteins in a specific conformation, concentration, and location to be functional. In this review, we discuss the role of specific mechanisms, both inside and outside cells, which maintain proteostasis, including molecular chaperones, protein degradation pathways, and the active formation of inclusions, in neurodegenerative diseases associated with protein aggregation. A characteristic of many neurodegenerative diseases is the aggregation of specific proteins, which alone provides strong evidence that protein homeostasis is disrupted in these disease states. Proteostasis is the maintenance of the proteome in the correct conformation, concentration, and location by functional pathways such as molecular chaperones and protein degradation machinery. Here, we discuss the potential roles of quality control pathways, both inside and outside cells, in the loss of proteostasis during aging and disease

    Glucocorticoid receptor dysregulation underlies 5-HT2AR-dependent synaptic and behavioral deficits in a mouse neurodevelopmental disorder model.

    Get PDF
    Prenatal environmental insults increase the risk of neurodevelopmental psychiatric conditions in the offspring. Structural modifications of dendritic spines are central to brain development and plasticity. Using maternal immune activation (MIA) as a rodent model of prenatal environmental insult, previous results have reported dendritic structural deficits in the frontal cortex. However, very little is known about the molecular mechanism underlying MIA-induced synaptic structural alterations in the offspring. Using prenatal (E12.5) injection with polyinosinic-polycytidylic acid potassium salt as a mouse MIA model, we show here that upregulation of the serotonin 5-HT2A receptor (5-HT2AR) is at least in part responsible for some of the effects of prenatal insults on frontal cortex dendritic spine structure and sensorimotor gating processes. Mechanistically, we report that this upregulation of frontal cortex 5-HT2AR expression is associated with MIA-induced reduction of nuclear translocation of the glucocorticoid receptor (GR) and, consequently, a decrease in the enrichment of GR at the 5-HT2AR promoter. The translational significance of these preclinical findings is supported by data in postmortem human brain samples suggesting dysregulation of GR translocation in frontal cortex of schizophrenia subjects. We also found that repeated corticosterone administration augmented frontal cortex 5-HT2AR expression and reduced GR binding to the 5-HT2AR promoter. However, virally (adeno-associated virus) mediated augmentation of GR function reduced frontal cortex 5-HT2AR expression and improved sensorimotor gating processes via 5-HT2AR. Together, these data support a negative regulatory relationship between GR signaling and 5-HT2AR expression in the mouse frontal cortex that may carry implications for the pathophysiology underlying 5-HT2AR dysregulation in neurodevelopmental psychiatric disorders.National Institutes of Health R01MH084894 (to J. G.-M.), R01MH111940 (to J. G.-M.), NIH-N01DA-17-8932 (to P. M. B.), NIH-N01DA-19-8949 (to P. M. B.), and F30MH116550 (to J. M. S.), and Basque Government IT1211-19 (to J. J. M.) participated in the funding of this study. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health

    Quantum Physics and Human Language

    Get PDF
    Human languages employ constructions that tacitly assume specific properties of the limited range of phenomena they evolved to describe. These assumed properties are true features of that limited context, but may not be general or precise properties of all the physical situations allowed by fundamental physics. In brief, human languages contain `excess baggage' that must be qualified, discarded, or otherwise reformed to give a clear account in the context of fundamental physics of even the everyday phenomena that the languages evolved to describe. The surest route to clarity is to express the constructions of human languages in the language of fundamental physical theory, not the other way around. These ideas are illustrated by an analysis of the verb `to happen' and the word `reality' in special relativity and the modern quantum mechanics of closed systems.Comment: Contribution to the festschrift for G.C. Ghirardi on his 70th Birthday, minor correction

    Systematic review and meta-analysis of reduction in all-cause mortality from walking and cycling and shape of dose response relationship

    Get PDF
    BACKGROUND AND OBJECTIVE: Walking and cycling have shown beneficial effects on population risk of all-cause mortality (ACM). This paper aims to review the evidence and quantify these effects, adjusted for other physical activity (PA). DATA SOURCES: We conducted a systematic review to identify relevant studies. Searches were conducted in November 2013 using the following health databases of publications: Embase (OvidSP); Medline (OvidSP); Web of Knowledge; CINAHL; SCOPUS; SPORTDiscus. We also searched reference lists of relevant texts and reviews. STUDY ELIGIBILITY CRITERIA AND PARTICIPANTS: Eligible studies were prospective cohort design and reporting walking or cycling exposure and mortality as an outcome. Only cohorts of individuals healthy at baseline were considered eligible. STUDY APPRAISAL AND SYNTHESIS METHODS: Extracted data included study population and location, sample size, population characteristics (age and sex), follow-up in years, walking or cycling exposure, mortality outcome, and adjustment for other co-variables. We used random-effects meta-analyses to investigate the beneficial effects of regular walking and cycling. RESULTS: Walking (18 results from 14 studies) and cycling (8 results from 7 studies) were shown to reduce the risk of all-cause mortality, adjusted for other PA. For a standardised dose of 11.25 MET.hours per week (or 675 MET.minutes per week), the reduction in risk for ACM was 11% (95% CI = 4 to 17%) for walking and 10% (95% CI = 6 to 13%) for cycling. The estimates for walking are based on 280,000 participants and 2.6 million person-years and for cycling they are based on 187,000 individuals and 2.1 million person-years. The shape of the dose-response relationship was modelled through meta-analysis of pooled relative risks within three exposure intervals. The dose-response analysis showed that walking or cycling had the greatest effect on risk for ACM in the first (lowest) exposure interval. CONCLUSIONS AND IMPLICATIONS: The analysis shows that walking and cycling have population-level health benefits even after adjustment for other PA. Public health approaches would have the biggest impact if they are able to increase walking and cycling levels in the groups that have the lowest levels of these activities. REVIEW REGISTRATION: The review protocol was registered with PROSPERO (International database of prospectively registered systematic reviews in health and social care) PROSPERO 2013: CRD42013004266

    The cellular and synaptic architecture of the mechanosensory dorsal horn

    Get PDF
    The deep dorsal horn is a poorly characterized spinal cord region implicated in processing low-threshold mechanoreceptor (LTMR) information. We report an array of mouse genetic tools for defining neuronal components and functions of the dorsal horn LTMR-recipient zone (LTMR-RZ), a role for LTMR-RZ processing in tactile perception, and the basic logic of LTMR-RZ organization. We found an unexpectedly high degree of neuronal diversity in the LTMR-RZ: seven excitatory and four inhibitory subtypes of interneurons exhibiting unique morphological, physiological, and synaptic properties. Remarkably, LTMRs form synapses on between four and 11 LTMR-RZ interneuron subtypes, while each LTMR-RZ interneuron subtype samples inputs from at least one to three LTMR classes, as well as spinal cord interneurons and corticospinal neurons. Thus, the LTMR-RZ is a somatosensory processing region endowed with a neuronal complexity that rivals the retina and functions to pattern the activity of ascending touch pathways that underlie tactile perception

    Sources of Variability in Measurements of Cardiac Troponin T in a Community-Based Sample: The Atherosclerosis Risk in Communities Study

    Get PDF
    BACKGROUND: Application of cardiac troponin T (cTnT) as a marker of myocyte damage requires knowledge of its measurement variability. Using a highly sensitive assay for measurement, we evaluated the long-term storage stability of plasma cTnT at -70 °C and the sources of cTnT variability. METHODS: Samples from the Atherosclerosis Risk in Communities study collected in 1996-1998 and 2005-2006 were assayed centrally to quantify variability in cTnT attributable to processing (replicates from same blood draw, n = 87), laboratory (replicates after freeze thaw, n = 29), short-term (n = 40) and long-term biological variation (repeat visit, n = 38), and degradation in frozen storage (n = 7677). RESULTS: Approximately 30% of this population-based cohort had cTnT concentrations below the detection limit (3 ng/L). Reliability coefficients for all paired comparisons exceeded 0.93 except for samples drawn 8 years apart (r = 0.36). Sources of cTnT variation (as CVs) were: laboratory, 2.1% and 11.2% in those with and without heart failure, respectively; processing, 18.3%; biological, 16.6% at 6 weeks and 48.4% at 8 years. The reference change value at 6 weeks (68.5%) indicated that 4 samples are needed to determine a homeostatic set point within ±25%. The estimated cTnT degradation rate over the first year in long-term frozen storage was 0.36 ng/L per year. CONCLUSIONS: cTnT was detectable in approximately 70% of community-dwelling middle-aged study participants and stable in -70 °C storage. The variability in cTnT attributable to 1 freeze-thaw cycle is of small magnitude. The observed high laboratory and intraindividual (biological) reliability of cTnT support its use for population-based research, and in clinical settings that rely on classification and serial measurements

    Cardiorespiratory fitness is associated with physical literacy in a large sample of Canadian children aged 8 to 12 years

    Get PDF
    Background The associations between cardiorespiratory fitness (CRF) and physical literacy in children are largely unknown. The aim of this study was to assess the relationships between CRF, measured using the 20-m shuttle run test (20mSRT), and components of physical literacy among Canadian children aged 8–12 years. Methods A total of 9393 (49.9% girls) children, with a mean (SD) age of 10.1 (±1.2) years, from a cross-sectional surveillance study were included for this analysis. The SRT was evaluated using a standardized 15 m or 20 m protocol. All 15 m SRTs were converted to 20mSRT values using a standardized formula. The four domains of physical literacy (Physical Competence, Daily Behaviour, Motivation and Confidence, and Knowledge and Understanding) were measured using the Canadian Assessment of Physical Literacy. Tertiles were identified for 20mSRT laps, representing low, medium, and high CRF for each age and gender group. Cohen’s d was used to calculate the effect size between the low and high CRF groups. Results CRF was strongly and favourably associated with all components of physical literacy among school-aged Canadian children. The effect size between low and high CRF tertile groups was large for the Physical Competence domain (Cohen’s d range: 1.11–1.94) across age and gender groups, followed by moderate to large effect sizes for Motivation and Confidence (Cohen’s d range: 0.54–1.18), small to moderate effect sizes for Daily Behaviour (Cohen’s d range: 0.25–0.81), and marginal to moderate effect sizes for Knowledge and Understanding (Cohen’s d range: 0.08–0.70). Conclusions This study identified strong favourable associations between CRF and physical literacy and its constituent components in children aged 8–12 years. Future research should investigate the sensitivity and specificity of the 20mSRT in screening those with low physical literacy levels
    corecore