164 research outputs found

    POOR PERFORMANCE OF BOOTSTRAP CONFIDENCE INTERVALS FOR THE LOCATION OF A QUANTITATIVE TRAIT LOUCS

    Get PDF
    The aim of many genetic studies is to locate the genomic regions (called quantitative trait loci, QTLs) that contribute to variation in a quantitative trait (such as body weight). Confidence intervals for the locations of QTLs are particularly important for the design of further experiments to identify the gene or genes responsible for the effect. Likelihood support intervals are the most widely used method to obtain confidence intervals for QTL location, but the non-parametric bootstrap has also been recommended. Through extensive computer simulation, we show that bootstrap confidence intervals are poorly behaved and so should not be used in this context. The profile likelihood (or LOD curve) for QTL location has a tendency to peak at genetic markers, and so the distribution of the maximum likelihood estimate (MLE) of QTL location has the unusual feature of point masses at genetic markers; this contributes to the poor behavior of the bootstrap. Likelihood support intervals and approximate Bayes credible intervals, on the other hand, are shown to behave appropriately

    Development of a Next-Generation NIL Library in Arabidopsis Thaliana for Dissecting Complex Traits

    Get PDF
    The identification of the loci and specific alleles underlying variation in quantitative traits is an important goal for evolutionary biologists and breeders. Despite major advancements in genomics technology, moving from QTL to causal alleles remains a major challenge in genetics research. Near-isogenic lines are the ideal raw material for QTL validation, refinement of QTL location and, ultimately, gene discovery. Results: In this study, a population of 75 Arabidopsis thaliana near-isogenic lines was developed from an existing recombinant inbred line (RIL) population derived from a cross between physiologically divergent accessions Kas-1 and Tsu-1. First, a novel algorithm was developed to utilize genome-wide marker data in selecting RILs fully isogenic to Kas-1 for a single chromosome. Seven such RILs were used in 2 generations of crossing to Tsu-1 to create BC1 seed. BC1 plants were genotyped with SSR markers so that lines could be selected that carried Kas-1 introgressions, resulting in a population carrying chromosomal introgressions spanning the genome. BC1 lines were genotyped with 48 genome-wide SSRs to identify lines with a targeted Kas-1 introgression and the fewest genomic introgressions elsewhere. 75 such lines were selected and genotyped at an additional 41 SNP loci and another 930 tags using 2b-RAD genotyping by sequencing. The final population carried an average of 1.35 homozygous and 2.49 heterozygous introgressions per line with average introgression sizes of 5.32 and 5.16 Mb, respectively. In a simple case study, we demonstrate the advantage of maintaining heterozygotes in our library whereby fine-mapping efforts are conducted simply by self-pollination. Crossovers in the heterozygous interval during this single selfing generation break the introgression into smaller, homozygous fragments (sub-NILs). Additionally, we utilize a homozygous NIL for validation of a QTL underlying stomatal conductance, a low heritability trait. Conclusions: The present results introduce a new and valuable resource to the Brassicaceae research community that enables rapid fine-mapping of candidate loci in parallel with QTL validation. These attributes along with dense marker coverage and genome-wide chromosomal introgressions make this population an ideal starting point for discovery of genes underlying important complex traits of agricultural and ecological significance.NSF DEB-1022196, DEB-0618302, DEB-0618347, IOS-09221457Integrative Biolog

    Pleiotropy of FRIGIDA enhances the potential for multivariate adaptation.

    Get PDF
    An evolutionary response to selection requires genetic variation; however, even if it exists, then the genetic details of the variation can constrain adaptation. In the simplest case, unlinked loci and uncorrelated phenotypes respond directly to multivariate selection and permit unrestricted paths to adaptive peaks. By contrast, 'antagonistic' pleiotropic loci may constrain adaptation by affecting variation of many traits and limiting the direction of trait correlations to vectors that are not favoured by selection. However, certain pleiotropic configurations may improve the conditions for adaptive evolution. Here, we present evidence that the Arabidopsis thaliana gene FRI (FRIGIDA) exhibits 'adaptive' pleiotropy, producing trait correlations along an axis that results in two adaptive strategies. Derived, low expression FRI alleles confer a 'drought escape' strategy owing to fast growth, low water use efficiency and early flowering. By contrast, a dehydration avoidance strategy is conferred by the ancestral phenotype of late flowering, slow growth and efficient water use during photosynthesis. The dehydration avoidant phenotype was recovered when genotypes with null FRI alleles were transformed with functional alleles. Our findings indicate that the well-documented effects of FRI on phenology result from differences in physiology, not only a simple developmental switch

    Genetic dissection of a model complex trait using the Drosophila Synthetic Population Resource

    Get PDF
    Genetic dissection of complex, polygenic trait variation is a key goal of medical and evolutionary genetics. Attempts to identify genetic variants underlying complex traits have been plagued by low mapping resolution in traditional linkage studies, and an inability to identify variants that cumulatively explain the bulk of standing genetic variation in genome-wide association studies (GWAS). Thus, much of the heritability remains unexplained for most complex traits. Here we describe a novel, freely available resource for the Drosophila community consisting of two sets of recombinant inbred lines (RILs), each derived from an advanced generation cross between a different set of eight highly inbred, completely resequenced founders. The Drosophila Synthetic Population Resource (DSPR) has been designed to combine the high mapping resolution offered by multiple generations of recombination, with the high statistical power afforded by a linkage-based design. Here, we detail the properties of the mapping panel of >1600 genotyped RILs, and provide an empirical demonstration of the utility of the approach by genetically dissecting alcohol dehydrogenase (ADH) enzyme activity. We confirm that a large fraction of the variation in this classic quantitative trait is due to allelic variation at the Adh locus, and additionally identify several previously unknown modest-effect trans-acting QTL (quantitative trait loci). Using a unique property of multiparental linkage mapping designs, for each QTL we highlight a relatively small set of candidate causative variants for follow-up work. The DSPR represents an important step toward the ultimate goal of a complete understanding of the genetics of complex traits in the Drosophila model system.This work was supported by the following NIH R01 grants: RR024862 to S.J.M. and A.D.L., GM085260 to S.J.M., GM085251 to A.D.L., GM078338 to S.S., and GM074244 to K.W.B

    Quality-of-Life Outcomes of Treatments for Cutaneous Basal Cell Carcinoma and Squamous Cell Carcinoma

    Get PDF
    Quality of life is an important treatment outcome for conditions that are rarely fatal, such as cutaneous basal cell carcinoma and squamous cell carcinoma (typically called nonmelanoma skin cancer (NMSC)). The purpose of this study was to compare quality-of-life outcomes of treatments for NMSC. We performed a prospective cohort study of 633 consecutive patients with NMSC diagnosed in 1999 and 2000 and followed for 2 years after treatment at a university-based private practice or a Veterans Affairs clinic. The main outcome was tumor-related quality of life 1 to 2 years after therapy, measured with the 16-item version of Skindex, a validated measure. Skindex scores vary from 0 (best) to 100 (worst) in three domains: Symptoms, Emotions, and Function. Treatments were electrodessication and curettage (ED&C) in 21%, surgical excision in 40%, and Mohs surgery in 39%. Five hundred and eight patients (80%) responded after treatment. Patients treated with excision or Mohs surgery improved in all quality-of-life domains, but quality of life did not improve after ED&C. There was no difference in the amount of improvement after excision or Mohs surgery. For example, mean Skindex Symptom scores improved 9.7 (95% CI: 6.9, 12.5) after excision, 10.2 (7.4, 12.9) after Mohs surgery, and 3.4 (−0.9, 7.6) after ED&C. We conclude that, for NMSC, quality-of-life outcomes were similar after excision and Mohs surgery, and both therapies had better outcomes than ED&C

    Strain Background Modifies Phenotypes in the ATP8B1-Deficient Mouse

    Get PDF
    BACKGROUND: Mutations in ATP8B1 (FIC1) underlie cases of cholestatic disease, ranging from chronic and progressive (progressive familial intrahepatic cholestasis) to intermittent (benign recurrent intrahepatic cholestasis). The ATP8B1-deficient mouse serves as an animal model of human ATP8B1 deficiency. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the effect of genetic background on phenotypes of ATP8B1-deficient and wild-type mice, using C57Bl/6 (B6), 129, and (B6-129) F1 strain backgrounds. B6 background resulted in greater abnormalities in ATP8B1-deficient mice than did 129 and/or F1 background. ATP8B1-deficient pups of B6 background gained less weight. In adult ATP8B1-deficient mice at baseline, those of B6 background had lower serum cholesterol levels, higher serum alkaline phosphatase levels, and larger livers. After challenge with cholate-supplemented diet, these mice exhibited higher serum alkaline phosphatase and bilirubin levels, greater weight loss and larger livers. ATP8B1-deficient phenotypes in mice of F1 and 129 backgrounds are usually similar, suggesting that susceptibility to manifestations of ATP8B1 deficiency may be recessive. We also detected differences in hepatobiliary phenotypes between wild-type mice of differing strains. CONCLUSIONS/SIGNIFICANCE: Our results indicate that the ATP8B1-deficient mouse in a B6 background may be a better model of human ATP8B1 deficiency and highlight the importance of informed background strain selection for mouse models of liver disease

    Genome-wide association study of inhaled corticosteroid response in admixed children with asthma

    Get PDF
    Background Inhaled corticosteroids (ICS) are the most widely prescribed and effective medication to control asthma symptoms and exacerbations. However, many children still have asthma exacerbations despite treatment, particularly in admixed populations, such as Puerto Ricans and African Americans. A few genome‐wide association studies (GWAS) have been performed in European and Asian populations, and they have demonstrated the importance of the genetic component in ICS response. Objective We aimed to identify genetic variants associated with asthma exacerbations in admixed children treated with ICS and to validate previous GWAS findings. Methods A meta‐analysis of two GWAS of asthma exacerbations was performed in 1347 admixed children treated with ICS (Hispanics/Latinos and African Americans), analysing 8.7 million genetic variants. Those with P ≤ 5 × 10−6 were followed up for replication in 1697 asthmatic patients from six European studies. Associations of ICS response described in published GWAS were followed up for replication in the admixed populations. Results A total of 15 independent variants were suggestively associated with asthma exacerbations in admixed populations (P ≤ 5 × 10−6). One of them, located in the intergenic region of APOBEC3B and APOBEC3C, showed evidence of replication in Europeans (rs5995653, P = 7.52 × 10−3) and was also associated with change in lung function after treatment with ICS (P = 4.91 × 10−3). Additionally, the reported association of the L3MBTL4‐ARHGAP28 genomic region was confirmed in admixed populations, although a different variant was identified. Conclusions and clinical relevance This study revealed the novel association of APOBEC3B and APOBEC3C with asthma exacerbations in children treated with ICS and replicated previously identified genomic regions. This contributes to the current knowledge about the multiple genetic markers determining responsiveness to ICS which could lead in the future the clinical identification of those asthma patients who are not able to respond to such treatment
    corecore