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ABSTRACT

The aim of many genetic studies is to locate the genomic nsgicalled quantitative trait
loci, QTLS) that contribute to variation in a quantitativait (such as body weight).
Confidence intervals for the locations of QTLs are partidulemportant for the design of
further experiments to identify the gene or genes resptfibthe effect. Likelihood support
intervals are the most widely used method to obtain confiel@mervals for QTL location, but
the non-parametric bootstrap has also been recommendszlgfhextensive computer
simulation, we show that bootstrap confidence intervalpacely behaved and so should not
be used in this context. The profile likelihood (or LOD curf@)QTL location has a tendency
to peak at genetic markers, and so the distribution of thammamx likelihood estimate (MLE)
of QTL location has the unusual feature of point masses atgemarkers; this contributes to
the poor behavior of the bootstrap. Likelihood supportriveés and approximate Bayes

credible intervals, on the other hand, are shown to behgweppately.
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INTRODUCTION

There is much interest in mapping the genetic loci (calleahgitative trait loci, QTLS) that
contribute to variation in a quantitative trait. Once sucQEL has been identified, interest
turns to the calculation of a confidence interval for its lom@ as such an interval estimate can
be a useful guide for the design of further experiments, sgsdihe generation of congenic
lines.

LOD support intervals are the most commonly used intervaneges for the location of a
QTL. A LOD support interval is defined as the interval in whtble LOD score is within some
value of its maximum. As an illustration, Figure 1A displdlie LOD curve for chromosome
4 for the data of 8GIYAMA et al. (2001), concerning salt-induced hypertension in 250
backcross mice. Assuming that there is a single QTL on thismmbhsome, the maximum
likelihood estimate (MLE) of the location of the QTL is theguon at which the LOD curve
achieves its maximum, in this case at marker D4Mit164 (at\dQ @he 1.5-LOD support
interval for the location of the QTL is the region in which th®D score is within 1.5 of its
maximum; here, the interval extends from 19 to 31 cM. (Wher#hevant region is
disconnected, we generally take the conservative appmfgdoinming the longest contiguous
interval.)

LANDER and BOTSTEIN (1989) recommended the use of 1- and 2-LOD support intervals
Dupuls and SEGMUND (1999) found that 1.5-LOD support intervals provide appra¢ely
95% coverage in the case of a dense marker map. However,ofteasbeen observed (see,
e.g., MANGIN et al. 1994), that the coverage of LOD support intervals depends tipe effect
of the QTL, and so they do not behave as true confidence iflgerva

VISscHEREet al. (1996) recommended the use of a nonparametric bootstragriieech
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confidence interval for the location of a QTL. For experinactoss data on individuals,
one makes draws, with replacement, from the observed individual®tafa new data set in
which some individuals are omitted and some appear muliiples. An estimate of QTL
location is calculated with these new data, and the prosagpeated many times. An
approximate 95% confidence interval for the location of tFi&.@@ obtained as the interval
containing 95% of the estimated locations from the bogisteplicates.

As an illustration, Figure 1B contains a histogram of theuttssof 10,000 bootstrap
replicates using the chromosome 4 data 06&AMA et al. (2001). The 95% bootstrap
confidence interval extends from 14 to 32 cM. A striking featof these results is that
approximately 79% of the bootstrap replicates gave an estithQTL location precisely at one
of the 20 genetic markers on the chromosome. (Note that tbalations were performed at
the markers and at 1 cM steps along the chromosome.) Thiitocan unusual feature of the
MLE of QTL location (previously observed by M/ILING et al. 1998): it has a great tendency
to occur precisely at a marker.

WALLING et al. (1998, 2002) investigated the performance of bootstraficemce
intervals for QTL location and concluded that they provigerapriate coverage. However, the
unusual character of the distributions obtained in appboa of the bootstrap for this
problem, well illustrated in Figure 1B, led us to suspect tha performance of the bootstrap
may be less than ideal, and that the bootstrap may be inapgefor the construction of
confidence intervals for QTL location. Thus, we conducteargd-scale computer simulation
study to investigate the performance of bootstrap confiel@mervals for QTL location.

We considered the case of a backcross with a single segrgdaiiL, normally distributed

residual variation, and equally spaced genetic markerbrixiy complete genotype data.
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While our simulation study is similar to those ofAM.ING et al. (1998, 2002), and differs
largely in scale and thus precision, our conclusions areegliiferent. We find that the
coverage of bootstrap confidence intervals for QTL locasioows great variation as a
function of the location of the QTL relative to the availakenetic markers, and so we
recommend against the use of the bootstrap for this problem.

One cannot reasonably recommend against the use of a meithmadityproviding some
alternative, and so we further investigated the perforraafid. OD support intervals, as well
as an approximate Bayes credible interval initially su¢ggedy SEN and GHURCHILL (2001).
Both of these types of intervals were found to display reddyi stable coverage. On the basis
of extensive simulations of backcrosses and intercrosgbs/arying marker densities and
varying sizes of the effect of the QTL, we provide estimatiethe appropriate amount to drop
for LOD support intervals and the appropriate nominal fractor the Bayes credible intervals
in order to attain an actual coverage of 95%. The Bayes deetfitervals are particularly
attractive, as a nominal Bayes fraction of 96.5% in a bads(and 97% in an intercross) is
found to provide quite consistent coverage, irrespectivth@size of the QTL effect, marker

density, number of individuals.
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METHODS

We consider the case of a backcross or intercross with aesssgjregating QTL. We focus
on the single chromosome (taken to have length 100 cM) heudptine QTL, and assume
equally-spaced markers with complete genotype data. Heéua variation is assumed to
follow a normal distribution, and QTL mapping was perforntgdstandard interval mapping
(LANDER and BoTSTEIN 1989), which we briefly describe.

One assumes the presence of a single QTL, and considers@sitibrpon the
chromosome, one at a time, as the putative location of the. QOlr analyses were conducted
at 1 cM steps along the chromosome.) While the QTL genotype,an individual is
generally not known, its distribution, conditional on thegable marker data, may be
calculated. Under the assumption of no crossover interéerand with complete marker
genotype data, the distribution @fdepends only on the genotypes at the flanking markers.
Given the QTL genotype, the phenotype is assumed to folloaranal distribution with mean
1, and common standard deviation Given the available marker data, the phenotype follows
a mixture of these normal distributions with known mixing@portions (the QTL genotype
probabilities, conditional on the marker data). The nuisgmarameters (the, ando) are
estimated by maximum likelihood via the EM algorithmgrPsTERet al. 1977), and a LOD
score is calculated, comparing the hypothesis that thexrsiisgle QTL precisely at that
location to the null hypothesis of no QTL anywhere (in whielse the phenotypes are
assumed to follow a single normal distribution, independégenotype).

Let § denote the true location of the QTL. The result of intervappiag is a LOD curve,
LOD(0), for the position of the QTL along the chromosorfieThis LOD curve is equivalent

to a profile log likelihood for the position of the QTL. The ML the location of the QTLY,
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is the position at which the LOD curve achieves its maximunhilé/analysis at one 1 cM
steps along the chromosome results in a discrete diswibédi 6, analysis on a finer grid
would greatly increase the computational effort, and wquitide similar results.

LOD support intervals were calculated as the longest coatig interval in which the LOD
score was within some chosen value of its maximum. Bootstoafidence intervals were
constructed via the percentile method, as describediBg&HEREt al. (1996). For each of
1000 bootstrap replicates, a sample of the same size asdhatde data were drawn with
replacement from the available individuals, a new estir&®@TL location §*) was obtained
by application of standard interval mapping to the resachgkta. The endpoints of the 95%
bootstrap confidence interval were taken to be the 2.5 aridg@#centiles of thé*. Finally,
an approximate Bayes credible interval was calculatedreated the profile likelihood for
QTL location as if it were a real likelihood, assigned a umifqorior on the location of the
QTL, and so derived an approximate posterior distribut@mJTL location,
£(0 ] datg = 10-°P®) / 529 10L°P@) | From this approximate posterior, a 95% Bayes credible
interval was defined to be the intervé),for which f (0 | datg exceeded some threshold and
for which}_,_, f(0 | data > 0.95.

Effect of QTL location relative to markers: In our first simulation study, to investigate
the coverage of bootstrap confidence intervals, we coresidebackcross of 200 individuals
and a single QTL whose position was allowed to vary at 1 cMsstépng a chromosome of
length 100 cM. Complete genotype data were available at Gidllyospaced markers (thus at a
10 cM spacing). The heritability due to the QTL (the propamtof the phenotypic variance
due to the QTL) was taken to be 10%.

For each of the 101 possible QTL positions (at 0, 1, 2, ...,dd}) we performed 10,000
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simulation replicates. At each replicate, we calculatedit®D curve by standard interval
mapping at 1 cM steps along the chromosome and derived tif@ dupport interval and
approximate 95% Bayes credible interval. (We used 1-LODpsttpntervals here, as they
were found to be somewhat conservative in this sparse-ngg)da addition, at each
simulation replicate we constructed a 95% bootstrap coméielénterval on the basis of 1000
bootstrap replicates, as described above. Great commuaidgffort was expended in this
investigation: at each of 1,010,000 simulation replici1€s000 replicates for each of 101
QTL positions), 1000 bootstrap replicates were performed.

The simulations were performed using the R statisticalso® (HAKA and GENTLEMAN
1996) and R/qtl (RoMAN et al. 2003), an add-on package to R. For some aspects of our
simulation studies, we used C code adapted from the R cod&gthiRorder to improve
computational speed.

Effect of cross type, sample size, marker density and QTL edfct: Based on the results
of the first simulation study, we performed a second simaiestudy to more completely
characterize the coverage of the LOD support and Bayestteadtervals. We varied the type
of cross (backcross or intercross) the sample size (200@ &t marker density (1, 2, 10 or
20 cM spacing), and the effect of the QTL. We hypothesizetlititarval coverage might be
more clearly expressed as a function of the power to deted@®L rather than the heritability
due to the QTL, and so heritabilities were chosen to giveregtd power of 0.3, 0.4, ..., 0.9,
where power was defined as the probability of achieving a LO@esof at least 3. These
heritabilities were estimated via R/qtIDesigre¢get al. 2005), an add-on package to the R
statistical software HAKA and GENTLEMAN 1996). Our targeted values for power, calculated

with R/qtlDesign, differed somewhat from the power estigdrom our simulation results, as
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we defined power to be the chance of a LOD scerg@ somewhere on the chromosome,
whereas R/qgtIDesign defines it to be the chance of a LOD se@at the QTL. The results
will be presented below using the power seen in our simuliatio

The position of the QTL was fixed at a position equidistanieein two markers and near
the center of the chromosome. For the marker spacings ofiD, 2nd 20 cM, the QTL was
placed at 50, 49, 45 and 50 cM, respectively. For each sdingyoss type, sample size,
marker density, and QTL effect), 100,000 simulation regiks were performed.

For each simulation replicate, standard interval mappiag performed to obtain the LOD
curve at 1 cM steps along the chromosome. Rather than ige¢stihe coverage of the LOD
support and Bayes credible intervals for particular ch®miethe drop in LOD and the nominal
Bayes fraction, we chose to estimate the drop in LOD and th@med Bayes fraction for
which the two types of intervals would attain 95% coverageedse values could be obtained
with little additional effort. At each simulation replicgtwe kept track of the difference in the
LOD score at the MLE and at the true location of the QTL. Thén3ircentile of these
differences is the value to drop in a LOD support intervalrtes to attain 95% coverage. A
similar trick applies for the Bayes credible intervals. 8lttat here we are using a definition
for the confidence interval that can lead to a set of disjaitgrvals, rather than a single

contiguous interval, and so the results are somewhat ccatses.
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RESULTS

Distribution of the MLE of QTL location: Our initial simulation study, comprising
10,000 replicates with a QTL at each of 0, 1, 2, ..., 100 cM ohrammosome of length
100 cM, allows us to inspect the distribution of the MLE of QlBlcation and the dependence
of this distribution on the location of the QTL relative taetmarkers. The simulations used a
backcross of 200 individuals, 11 equally spaced markerglf18pacing), and heritability due
to the single QTL at 10%.

Figure 2 displays the distribution of the MLE of QTL positiah as a function of the true
location of the QTLY, for § = 45, 46, ..., 50. The most striking feature of these distiins
is the clear tendency for theto occur exactly at the marker loci. For example, in the chae t
the QTL is at 49 cM, immediately adjacent to a marker, theeefer greater chance that the
QTL is estimated to be at the marker rather than at the truitotof the QTL. A similar
pattern was seen for other valuelofThe standard error (SE) éfis smallest when the QTL
is at a marker, and i525% larger when the QTL is in the center of the interval betwee
markers. When the QTL is near one of the ends of the chromagbexdibits considerable
bias, as we do not examine positions beyond the terminalensadn the chromosome. We
calculated the LOD score at 1 cM steps along the chromosamdes@estimated QTL position
only to within 1 cM. If calculations were performed on a moende grid, the tendency for the
MLE to occur precisely at the markers would be even moreistyik

The dependence of the distributionébbn the position of the QTL relative to the markers,
both with respect to the large mass placed at the markershanditiation in the SE of, will
be seen to cause a breakdown in the performance of the agotstrthis problem.

Coverage vs. true QTL location: Performance of a confidence interval is generally
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assessed by its coverage (the probability that it conthims$rtie parameter value) as a function
of the true parameter. Ideally, a 95% confidence intervalistanstant 95% coverage,
regardless of the true parameter value. In Figure 3, coeashthe 95% bootstrap confidence
interval (in black), 1-LOD support interval (in red) and tygproximate 95% Bayes credible
interval (in blue) are displayed as a function of the truextan of the QTL. The bootstrap
confidence intervals shows extremely high coverag@6) when the true QTL is at a
marker, low coverage~92.5%) when the QTL is right next to a marker, and above noimina
coverage when the QTL is exactly between markers. Coveritpe 4-LOD support and
approximate 95% Bayes credible intervals does not fluctasitgidely, though it is highest
when the QTL is at a marker. Note that the SEs of our estimdtesverage are-0.3%.

Coverage vs. estimated QTL locationit is also of interest to consider coverage as a
function of the estimated QTL locatiof, In our simulations, we performed 10,000 replicates
for each of the 101 possible positions of the QTL; here we icenshe portion of those
1,010,000 simulation replicates in which the MLE was atdirfor example, at 50 cM, and
calculate the proportion of those replicates in which egple bf confidence interval contained
the true parameter value. This is an unorthodox mixture geBand frequentist statistics.
The coverage of a confidence interval is a quantity of inteyely to frequentists; here we are
taking the location of the QTL to be uniformly distributed thre positions 0, 1, 2, ..., 100 cM,
and inspecting the posterior probability, given the obsdrmestimate of the QTL location, that
the interval covers its true parameter value. Note thagsacthe 1,010,000 simulation
replicates, each possible valuefofias observed at least 6700 times, and so the SEs of our
estimates of coverage as a functiorfafre ~0.4%.

Coverage as a function of the estimated location of the QTisiglayed in Figure 4. These
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results provide a qualitatively different perspectivenfirthose of coverage v8, shown in
Figure 3. While coverage of the bootstrap confidence inteigsahigh when the QTL is at a
marker (see Figure 3), coverage is low92%) when the QTL is estimated to be at a marker.
Coverage of the 1-LOD support interval and approximate 9%teB credible interval is less
variable as a function df, and is entirely above the nominal level, 95%, with the Bayes
credible interval exhibiting slightly less variabilitydah the LOD support interval.

We view this perspective (coverage of a confidence inteimadlitional on the observed
estimatef) as the more relevant one for the user of a confidence inteDra does not know
the true location of the QTL, but does know one’s estimatdaf location, and so coverage as
a function of the observed estimate is of greatest inteBagtit is from this perspective that
coverage of the bootstrap confidence intervals looks wivkile coverage is low only when
the estimated location of the QTL is at a marker, it is quite o that case, and, as we've seen,
that is often the case.

Interval widths: Another important feature of a confidence interval is itstividbne
prefers intervals to be as small as possible, while maiimgithe appropriate level of
coverage. Averaging over all possible valueg ahe 95% bootstrap confidence interval,
1-LOD support intervals and 95% Bayes credible intervatsdgerage widths of 45, 24, and
29 cM, respectively. When the QTL was not close to the end®ttiromosome, the 1-LOD
support intervals were more than 40% smaller than the bhaptsbnfidence intervals about
half of the time. The approximate 95% Bayes credible interaad the 1-LOD support
intervals were quite similar in width. The 1-LOD support @& Bayes credible intervals
show not just better coverage probabilities than the 95%db@p intervals (see Figures 3 and

4), but are also generally smaller.
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Coverage with varying cross type, sample size, marker dertgiand QTL effect: As
described above, coverage of the 95% bootstrap confidetesgars varied greatly according
to the position of the QTL relative to the genetic markers;1H.OD support and 95% Bayes
credible intervals, on the other hand, exhibited relayiatable coverage across the
chromosome. We thus omitted the bootstrap confidence alteinom further consideration,
but sought a more complete characterization of the perfoceaf the LOD support intervals
and the approximate Bayes credible intervals, as a funofisample size, marker density, and
QTL effect, and considering both a backcross and an intsscro

Rather than study the coverage of the intervals for a fixed tr@OD or nominal Bayes
fraction, we sought the values that would give 95% coveragifarent settings of the
parameters of interest. The value to drop in LOD in orderlierd¢overage of the LOD support
interval to have 95% coverage in a backcross is displayetyur& 5A. The results are
displayed as a function of the size of the effect of the QTLichlnas been reparameterized as
the power to give a LOD score of at least 3. (The displayedesgfar the power were
estimated from 100,000 simulation replicates at each pant so have standard error
<0.2%.) The black and red curves correspond to sample siZ0adnd 500, respectively. As
seen in the figure, sample size has little effect on the apjatepdrop in LOD to give 95%
coverage, for a given power to detect the QTL. Of course, énigdbility due to the QTL that
corresponds to a particular power is quite different fortthe sample sizes. The biggest effect
seen concerns the spacing of markers: one mustdfop in LOD to attain 95% coverage
when markers are at a 1 cM spacing, but need dropedly in LOD if the markers are at a
10 cM spacing. A slightly smaller drop is required when theLQi&s a larger effect.

The nominal Bayes fractions at which the approximate Bayedilole intervals had 95%
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coverage in a backcross are displayed in Figure 5B. Agampkasize has little effect, except
in the case of very dense markers. The effect of marker spacid of the size of the QTL
effect is seen to be in the opposite direction for the Baytsvals versus the LOD support
intervals. A greater nominal Bayes fraction is needed farsp markers and for a larger QTL
effect.

Figures 5C and 5D show the corresponding results for anciries. A greater drop in
LOD is required in order for the LOD support interval to has®coverage in the intercross,
and the QTL effect appears to have a somewhat greater infimnthe appropriate value to
drop. Sample size is again seen to have little effect, andrbatest influence comes from the
marker spacing, with a greater drop in LOD required in theadsnore densely spaced
markers. There is remarkably little variation in the appiaie nominal Bayes fraction so that
the approximate Bayes credible interval has 95% coverage intercross; for all sample
sizes, marker spacings, and QTL effects, the appropriatenad Bayes fraction was 96—97%.

These results suggest that, for the Bayes intervals, thefl@&5% for a backcross and
97% for an intercross will provide greater than 95% coveffagell possible cases. For the
LOD support intervals, if one drops by 1.5 for a backcross BB8dor an intercross, coverage
will be maintained at greater than 95%. The actual coveraggmed with these choices are
shown in Figure 6. The Bayes intervals are seen to be patlgwttractive, as they exhibit

quite stable coverage with sample size, marker density(arideffect.
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DISCUSSION

We have shown that coverage of bootstrap confidence ingsimaQTL location depends
critically upon the location of the QTL relative to the typgenetic markers. Coverage is high
when the QTL is at a marker but can be low when the QTL is immeljiadjacent to a
marker (see Figure 3). Especially interesting results wbserved in the consideration of
coverage as a function of the estimated location of the Qdking the true location of the
QTL to be uniformly distributed along the chromosome. Thasspective is most relevant for
the user of such confidence intervals, and indicates pofwnpeance of the bootstrap
confidence intervals: coverage is quite far below the nohtewval when the QTL is estimated
to be at a marker (see Figure 4). The bootstrap confidenaeatdavere also seen to be much
wider than the LOD support and approximate Bayes credildézvals.

Our results are similar to those ofAM.ING et al. (1998, 2002), but our conclusions are
markedly different. It is important to point out thatAM.ING et al. (1998, 2002) used
Haley-Knott regression (BLEY and KNOTT 1992), whereas we have focused on standard
interval mapping (IANDER and BOTSTEIN 1989), using maximum likelihood via the EM
algorithm. While it was not mentioned above, we did incluge dise of Haley-Knott regression
in our initial simulation study, and found similar resultsthe two methods (data not shown).

Bootstrap methods have desirable properties in a widetyasfestatistical problems.
However, modifications to the bootstrap are necessary triems that are not classically
regular (BERAN 2003), and the QTL mapping problem is not regulaoffG and WRIGHT
1994, SEGMUND 2004). Thus, our finding of inadequate bootstrap perforrmam@TL
mapping is consistent with theory.

The poor performance of bootstrap confidence intervals Tt [@cation derives from the
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unusual behavior of the MLE of QTL location: the MLE has a tencl to coincide with a
marker position (see Figure 2 anebKG and WRIGHT 1994), and its SE varies greatly
according to the location of the QTL relative to the markéygpropriate performance of the
percentile-based nonparametric bootstrap confidencevaiseproposed, for this context, by
VISSCHEREet al. (1996), and studied herein) generally requires the existefisome
monotone transformatiol(-) such that:(4) — h(0) has the same symmetric continuous
distribution for allf (SHAO and Tu 1995, pg 132). The tendency of the MLE to occur at a
marker indicates that no such transformation exists farphbblem.

An alternative heuristic for understanding the breakdothe bootstrap in this problem is
as follows: we hope to approximate the sampling distributf({é | #), by the bootstrap
distribution,g(#* | 6). But the bootstrap distribution better reflects the sangpdiistribution
evaluated at the observed estimatg,| ), than it does the targef(- | ). That the MLE is
most precise when the QTL is at a marker, and is less precisa thie QTL is between
markers, indicates that the bootstrap distribution witlpde an overly optimistic view of our
understanding of the location of the QTL in those cases irtlvhie have estimated the QTL
to be at a marker.

WALLING et al. (1998) also assessed the performance of the parametristiagtor this
problem; rather than resampling from the observed datasiomglates new data taking one’s
estimate of the QTL location to be the true location. Theyot#d the surprising result that
the parametric bootstrap performed more poorly than th@a@metric bootstrap; the result is
surprising, because when one’s model is correct (as it wiginsimulation study), the
parametric bootstrap would be expected to give better peence than the nonparametric

bootstrap. This result can now be clearly understood. Iipérametric bootstrap, the bootstrap
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distribution on which the confidence interval is based ig@ynthe sampling distribution of the
estimate in the case that the QTL is located at the obsertedats. Thus, when the QTL is
estimated to be at a marker, the parametric bootstrap vallige an overly optimistic view of
the precision of that estimate.

The tendency of the MLE for QTL location to occur precisehaatenetic marker (see
Figure 2) is a major contributor to the failure of the boaptm this context. Our explanation
of the cause of this behavior is as follows. The profile likebd exhibits cusps at the markers.
(Its first derivative is not continuous at the markers.) Titithe result of the fact that, in the
case of complete genotype data at the markers, and with senggion of no crossover
interference, the likelihood to the left of the marker inporates data on the marker to the left
but not that for the marker to the right, while the likelihadhe right of a marker
incorporates data on the marker to the right but not thatfembarker to the left. The abrupt
change in the first derivative of the profile likelihood at tharkers appears to lead to a greater
chance of a change in the direction of the profile likelihcant] so a greater chance that the
MLE occurs precisely at a marker.

It should be emphasized that these results were obtainesingke setting: a backcross of
200 individuals, equally spaced markers at a 10 cM spacimdharitability due to the QTL at
10%. The behavior of the bootstrap seen here may not hold@énén fact, for a cross with
very dense markers and a QTL of not too strong effect, thestiagt would likely behave
reasonably. However, the setting in which our simulatioesexconducted is not unreasonable,
and that the bootstrap performed so poorly here supporggetheral conclusion that it should
not be used.

It should also be emphasized that we have considered ordgipie-based nonparametric
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bootstrap confidence intervals, as that was the approaomraended by YSSCHEREet al.
(1996). Other forms of bootstrap might be found to work irsttontext. For example one
might use a bootstrap to calibrate the LOD support or apprate Bayes credible intervals.
However, the good performance of the approximate Bayesldesidterval suggests that the
computational effort that must be expended in any bootstrap not be necessary.

We have focused on the simplest possible QTL model: a singlev@th normally
distributed residual variation. This simple model is nkely to hold in practice. An especially
important departure concerns the presence of multipledr@®@TLs. A confidence interval for
QTL location derived from the results of analysis using BAQTL models has little meaning
if there exist multiple QTLs on the chromosome. The LOD suppnd Bayes credible
intervals have obvious extensions for the case of multigie€)their performance, especially
in the case of multiple linked QTLs, deserves further study.

While we have shown that bootstrap confidence intervals Tt [Qcation perform poorly
and so should not be used in this context, the LOD support ppbaimate Bayes credible
intervals were seen to behave appropriately. This is indeggeement with DpPuUIS and
SIEGMUND (1999). They studied the performance of LOD support and Bayedible
intervals, focusing on the widths of the intervals. Theyrfdahat when LOD support and
Bayes credible intervals had similar coverage, their védtiere generally comparable. For
LOD intervals to have the target coverage properties, thB d&p has to be adjusted, while
the Bayes intervals give consistent coverage for a rangeadken densities and QTL effects.
Thus, the approximate Bayes credible intervals are paatiguattractive; a nominal 96.5 or
97% Bayes credible interval was seen to exhibit coverage3%a for different sample sizes,

marker densities, and sizes of QTL effect.
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Finally, we wish to emphasize that 95% is not a magic numinerjavestigators may wish
to be more conservative (seeking, for example, 99% covgragehat, for example, the

formation of a congenic line does not miss the true locatich® QTL.

ACKNOWLEDGMENTS

This work was supported in part by NIH grant GM074244 (to KByl a NSF Graduate

Research Fellowship (to AM).

20
http://biostats.bepress.com/jhubiostat/paper105



LITERATURE CITED

BERAN, R., 2003 The impact of the bootstrap on statistical algorg and theory. Statistical

Sciencel8: 175-184.

BROMAN, K. W., H. WU, S. Sen and G. A. GURCHILL, 2003 R/qtl: QTL mapping in

experimental crosses. Bioinformatit3: 889—-890.

DEMPSTER A. P., N. M. LAIRD and D. B. RuBIN, 1977 Maximum likelihood from incom-

plete data via the EM algorithm. J. R. Stat. So8® 1-38.

Dupruls, J., and D. &GMUND, 1999 Statistical methods for mapping quantitative trai |

from a dense set of markers. Genetiéd: 373-386.

HALEY, C. S., and S. A. KOTT, 1992 A simple regression method for mapping quantitative

trait loci in line crosses using flanking markers. Here@®y 315—-324.

IHAKA, R., and R. GNTLEMAN, 1996 R: alanguage for data analysis and graphics. J. Comp.

Graph. Stat5: 299-314.

KONG, A., and F. WRIGHT, 1994 Asymptotic theory for gene mapping. Proc. Natl. Ac&ad.

USA 91: 9705-9709.

LANDER, E. S., and D. BTSTEIN, 1989 Mapping Mendelian factors underlying quantitative

traits using RFLP linkage maps. Geneticsl: 185-199.

MANGIN, B., B. GOFFINET and A. REBAI, 1994 Constructing confidence intervals for QTL

location. Geneticd38 1301-1308.

21
Hosted by The Berkeley Electronic Press



SEN, S., and G. A. GURCHILL, 2001 A statistical framework for guantitative trait mapgi

Geneticsl59: 371-387.

SEN, S., J. M. STAGOPAN, K. W. BROMAN and G. A. GIURCHILL, 2005 R/qtIDesign: In-
bred line cross experimental design. Working Paper, Cént&ioinformatics and Molecular
Biostatistics, University of California, San Francisedittp://repositories.cdlib.org/cbmb/qtl-

powercalculations.
SHAO, J., and D. S. T, 1995 The Jackknife and the Bootstrap. Springer, New York.

SIEGMUND, D., 2004 Model selection in irregular problems: Applicais to mapping quanti-

tative trait loci. Biometrikéd1: 785-800.

SUGIYAMA, F., G. A. GHURCHILL, D. C. HIGGINS, C. oHNS, K. P. MAKARITSIS et al.,
2001 Concordance of murine quantitative trait loci for sattuced hypertension with rat

and human loci. Genomic&l: 70-77.

VISSCHER P. M., R. THompsoN and C. S. KALEY, 1996 Confidence intervals in QTL

mapping by bootstrapping. Genetit43 1013-1020.

WALLING, G. A., P. M. isscHERand C. S. KALEY, 1998 A comparison of bootstrap

methods to construct confidence intervals in QTL mappingiegeRes71: 171-180.

WALLING, G. A., C. S. KALEY, M. PEREZ-ENCISO, R. THOMPSONand P. M. MSSCHER
2002 On the mapping of quantitative trait loci at marker and-marker locations. Genet.

Res.79:'97-106.

22
http://biostats.bepress.com/jhubiostat/paper105



FIGURE LEGENDS

Figure 1. Results for the chromosome 4 data afcSvAmMA etal (2001).A. The LOD curve and
the 1.5-LOD support interval. Tick marks at the bottom of figeire indicate the locations
of the genetic marker®B. A histogram of the estimated QTL locations in 10,000 boafstr
replicates, and the 95% bootstrap confidence intervalylztd by the method of SCHER

et al. (1996).

Figure 2. Estimated distribution of the MLE of QTL locatiofi, as a function of the true loca-
tion of the QTL,#, for 6 varying from 45 to 50. The results are based on 10,000 simulat
replicates of a backcross with 200 individuals for a chroomos of length 100 cM and having

11 equally spaced markers, and with the heritability duéQTL at 10%.

Figure 3. Coverage of 95% bootstrap confidence intervals (black)ODLsupport intervals
(red) and approximate 95% Bayes credible intervals (blnd)as a function of the true QTL

position,d. The dashed vertical gray lines denote marker positionserctiromosome.

Figure 4. Coverage of 95% bootstrap confidence intervals (black)ODLsupport intervals
(red) and approximate 95% Bayes credible intervals (bla&) fanction of the MLE of QTL

position,d. The dashed vertical gray lines denote marker positionsectromosome.

Figure 5. Estimated amount to drop in a LOD support intenalgnd C) and the nominal
Bayes coverage for the approximate Bayes credible intéBvahdD) to give 95% coverage,
on the basis of 100,000 simulation replicates. BackcrAsandB) and intercross andD)
experiments with either 200 (black curves) or 500 (red csirusdividuals were considered.

The line types indicate different possible marker spaciivgiies are plotted as a function of
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the effect of the QTL, scaled according to the power to detexQTL.

Figure 6. Coverage of the 1.5-LOD support interval in a backcrasy the 96.5% Bayes
interval in a backcros$|), the 1.8-LOD support interval in an intercro$3)( and the 97%
Bayes interval in an intercrosB}), on the basis of 100,000 simulation replicates. The black
curves are for 200 individuals; the red curves are for 50&/iddals. The line types indicate
different possible marker spacings. Values are plottedfasciion of the effect of the QTL,

scaled according to the power to detect the QTL.
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Figure 1. Results for the chromosome 4 data af8YAMA et al (2001).A. The LOD curve
and the 1.5-LOD support interval. Tick marks at the bottortheffigure indicate the locations
of the genetic marker®3. A histogram of the estimated QTL locations in 10,000 boatstr
replicates, and the 95% bootstrap confidence intervalutzbd by the method of MSCHER

et al. (1996).
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Figure 2. Estimated distribution of the MLE of QTL locatiof, as a function of the true
location of the QTLJ, for # varying from 45 to 50. The results are based on 10,000 simulat
replicates of a backcross with 200 individuals for a chroomes of length 100 cM and having
11 equally spaced markers, and with the heritability dué¢oQTL at 10%.
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Figure 3. Coverage of 95% bootstrap confidence intervals (black)ODlsupport intervals
(red) and approximate 95% Bayes credible intervals (blod)as a function of the true QTL
position,d. The dashed vertical gray lines denote marker positionk®ctiromosome.
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Figure 4. Coverage of 95% bootstrap confidence intervals (black)ODlsupport intervals
(red) and approximate 95% Bayes credible intervals (blee) finction of the MLE of QTL
position,d. The dashed vertical gray lines denote marker positionk®ctiromosome.
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Figure 5. Estimated amount to drop in a LOD support intenfalghdC) and the nominal
Bayes coverage for the approximate Bayes credible int@B/ahdD) to give 95% coverage,
on the basis of 100,000 simulation replicates. BackcrasandB) and intercross andD)
experiments with either 200 (black curves) or 500 (red csiriredividuals were considered.
The line types indicate different possible marker spacivgtues are plotted as a function of
the effect of the QTL, scaled according to the power to detecQTL.
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Figure 6. Coverage of the 1.5-LOD support interval in a backcr@gs the 96.5% Bayes
interval in a backcros$)), the 1.8-LOD support interval in an intercro$3){ and the 97%
Bayes interval in an intercrosB}, on the basis of 100,000 simulation replicates. The black
curves are for 200 individuals; the red curves are for 50iddals. The line types indicate
different possible marker spacings. Values are plottedfas@ion of the effect of the QTL,
scaled according to the power to detect the QTL.
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