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ABSTRACT

The aim of many genetic studies is to locate the genomic regions (called quantitative trait

loci, QTLs) that contribute to variation in a quantitative trait (such as body weight).

Confidence intervals for the locations of QTLs are particularly important for the design of

further experiments to identify the gene or genes responsible for the effect. Likelihood support

intervals are the most widely used method to obtain confidence intervals for QTL location, but

the non-parametric bootstrap has also been recommended. Through extensive computer

simulation, we show that bootstrap confidence intervals arepoorly behaved and so should not

be used in this context. The profile likelihood (or LOD curve)for QTL location has a tendency

to peak at genetic markers, and so the distribution of the maximum likelihood estimate (MLE)

of QTL location has the unusual feature of point masses at genetic markers; this contributes to

the poor behavior of the bootstrap. Likelihood support intervals and approximate Bayes

credible intervals, on the other hand, are shown to behave appropriately.
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INTRODUCTION

There is much interest in mapping the genetic loci (called quantitative trait loci, QTLs) that

contribute to variation in a quantitative trait. Once such aQTL has been identified, interest

turns to the calculation of a confidence interval for its location, as such an interval estimate can

be a useful guide for the design of further experiments, suchas the generation of congenic

lines.

LOD support intervals are the most commonly used interval estimates for the location of a

QTL. A LOD support interval is defined as the interval in whichthe LOD score is within some

value of its maximum. As an illustration, Figure 1A displaysthe LOD curve for chromosome

4 for the data of SUGIYAMA et al. (2001), concerning salt-induced hypertension in 250

backcross mice. Assuming that there is a single QTL on this chromosome, the maximum

likelihood estimate (MLE) of the location of the QTL is the position at which the LOD curve

achieves its maximum, in this case at marker D4Mit164 (at 30 cM). The 1.5-LOD support

interval for the location of the QTL is the region in which theLOD score is within 1.5 of its

maximum; here, the interval extends from 19 to 31 cM. (When the relevant region is

disconnected, we generally take the conservative approachof forming the longest contiguous

interval.)

LANDER and BOTSTEIN (1989) recommended the use of 1- and 2-LOD support intervals.

DUPUIS and SIEGMUND (1999) found that 1.5-LOD support intervals provide approximately

95% coverage in the case of a dense marker map. However, it hasoften been observed (see,

e.g., MANGIN et al. 1994), that the coverage of LOD support intervals depends upon the effect

of the QTL, and so they do not behave as true confidence intervals.

V ISSCHERet al. (1996) recommended the use of a nonparametric bootstrap to derive a

4
http://biostats.bepress.com/jhubiostat/paper105



confidence interval for the location of a QTL. For experimental cross data onn individuals,

one makesn draws, with replacement, from the observed individuals to form a new data set in

which some individuals are omitted and some appear multipletimes. An estimate of QTL

location is calculated with these new data, and the process is repeated many times. An

approximate 95% confidence interval for the location of the QTL is obtained as the interval

containing 95% of the estimated locations from the bootstrap replicates.

As an illustration, Figure 1B contains a histogram of the results of 10,000 bootstrap

replicates using the chromosome 4 data of SUGIYAMA et al. (2001). The 95% bootstrap

confidence interval extends from 14 to 32 cM. A striking feature of these results is that

approximately 79% of the bootstrap replicates gave an estimated QTL location precisely at one

of the 20 genetic markers on the chromosome. (Note that the calculations were performed at

the markers and at 1 cM steps along the chromosome.) This is due to an unusual feature of the

MLE of QTL location (previously observed by WALLING et al. 1998): it has a great tendency

to occur precisely at a marker.

WALLING et al. (1998, 2002) investigated the performance of bootstrap confidence

intervals for QTL location and concluded that they provide appropriate coverage. However, the

unusual character of the distributions obtained in applications of the bootstrap for this

problem, well illustrated in Figure 1B, led us to suspect that the performance of the bootstrap

may be less than ideal, and that the bootstrap may be inappropriate for the construction of

confidence intervals for QTL location. Thus, we conducted a large-scale computer simulation

study to investigate the performance of bootstrap confidence intervals for QTL location.

We considered the case of a backcross with a single segregating QTL, normally distributed

residual variation, and equally spaced genetic markers exhibiting complete genotype data.
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While our simulation study is similar to those of WALLING et al. (1998, 2002), and differs

largely in scale and thus precision, our conclusions are quite different. We find that the

coverage of bootstrap confidence intervals for QTL locationshows great variation as a

function of the location of the QTL relative to the availablegenetic markers, and so we

recommend against the use of the bootstrap for this problem.

One cannot reasonably recommend against the use of a method without providing some

alternative, and so we further investigated the performance of LOD support intervals, as well

as an approximate Bayes credible interval initially suggested by SEN and CHURCHILL (2001).

Both of these types of intervals were found to display relatively stable coverage. On the basis

of extensive simulations of backcrosses and intercrosses with varying marker densities and

varying sizes of the effect of the QTL, we provide estimates of the appropriate amount to drop

for LOD support intervals and the appropriate nominal fraction for the Bayes credible intervals

in order to attain an actual coverage of 95%. The Bayes credible intervals are particularly

attractive, as a nominal Bayes fraction of 96.5% in a backcross (and 97% in an intercross) is

found to provide quite consistent coverage, irrespective of the size of the QTL effect, marker

density, number of individuals.
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METHODS

We consider the case of a backcross or intercross with a single segregating QTL. We focus

on the single chromosome (taken to have length 100 cM) harboring the QTL, and assume

equally-spaced markers with complete genotype data. The residual variation is assumed to

follow a normal distribution, and QTL mapping was performedby standard interval mapping

(LANDER and BOTSTEIN 1989), which we briefly describe.

One assumes the presence of a single QTL, and considers each position on the

chromosome, one at a time, as the putative location of the QTL. (Our analyses were conducted

at 1 cM steps along the chromosome.) While the QTL genotype,q, of an individual is

generally not known, its distribution, conditional on the available marker data, may be

calculated. Under the assumption of no crossover interference and with complete marker

genotype data, the distribution ofq depends only on the genotypes at the flanking markers.

Given the QTL genotype, the phenotype is assumed to follow a normal distribution with mean

µq and common standard deviationσ. Given the available marker data, the phenotype follows

a mixture of these normal distributions with known mixing proportions (the QTL genotype

probabilities, conditional on the marker data). The nuisance parameters (theµq andσ) are

estimated by maximum likelihood via the EM algorithm (DEMPSTERet al. 1977), and a LOD

score is calculated, comparing the hypothesis that there isa single QTL precisely at that

location to the null hypothesis of no QTL anywhere (in which case the phenotypes are

assumed to follow a single normal distribution, independent of genotype).

Let θ denote the true location of the QTL. The result of interval mapping is a LOD curve,

LOD(θ), for the position of the QTL along the chromosome,θ. This LOD curve is equivalent

to a profile log likelihood for the position of the QTL. The MLEof the location of the QTL,̂θ,
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is the position at which the LOD curve achieves its maximum. While analysis at one 1 cM

steps along the chromosome results in a discrete distribution for θ̂, analysis on a finer grid

would greatly increase the computational effort, and wouldprovide similar results.

LOD support intervals were calculated as the longest contiguous interval in which the LOD

score was within some chosen value of its maximum. Bootstrapconfidence intervals were

constructed via the percentile method, as described by VISSCHERet al. (1996). For each of

1000 bootstrap replicates, a sample of the same size as the available data were drawn with

replacement from the available individuals, a new estimateof QTL location (̂θ∗) was obtained

by application of standard interval mapping to the resampled data. The endpoints of the 95%

bootstrap confidence interval were taken to be the 2.5 and 97.5 percentiles of thêθ∗. Finally,

an approximate Bayes credible interval was calculated: we treated the profile likelihood for

QTL location as if it were a real likelihood, assigned a uniform prior on the location of the

QTL, and so derived an approximate posterior distribution for QTL location,

f(θ | data) = 10LOD(θ)/
∑100

θ=0 10LOD(θ). From this approximate posterior, a 95% Bayes credible

interval was defined to be the interval,I, for whichf(θ | data) exceeded some threshold and

for which
∑

θ∈I f(θ | data) ≥ 0.95.

Effect of QTL location relative to markers: In our first simulation study, to investigate

the coverage of bootstrap confidence intervals, we considered a backcross of 200 individuals

and a single QTL whose position was allowed to vary at 1 cM steps along a chromosome of

length 100 cM. Complete genotype data were available at 11 equally spaced markers (thus at a

10 cM spacing). The heritability due to the QTL (the proportion of the phenotypic variance

due to the QTL) was taken to be 10%.

For each of the 101 possible QTL positions (at 0, 1, 2, . . . , 100cM), we performed 10,000
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simulation replicates. At each replicate, we calculated the LOD curve by standard interval

mapping at 1 cM steps along the chromosome and derived the 1-LOD support interval and

approximate 95% Bayes credible interval. (We used 1-LOD support intervals here, as they

were found to be somewhat conservative in this sparse-map case.) In addition, at each

simulation replicate we constructed a 95% bootstrap confidence interval on the basis of 1000

bootstrap replicates, as described above. Great computational effort was expended in this

investigation: at each of 1,010,000 simulation replicates(10,000 replicates for each of 101

QTL positions), 1000 bootstrap replicates were performed.

The simulations were performed using the R statistical software (IHAKA and GENTLEMAN

1996) and R/qtl (BROMAN et al. 2003), an add-on package to R. For some aspects of our

simulation studies, we used C code adapted from the R code in R/qtl in order to improve

computational speed.

Effect of cross type, sample size, marker density and QTL effect: Based on the results

of the first simulation study, we performed a second simulation study to more completely

characterize the coverage of the LOD support and Bayes credible intervals. We varied the type

of cross (backcross or intercross) the sample size (200 or 500), the marker density (1, 2, 10 or

20 cM spacing), and the effect of the QTL. We hypothesized that interval coverage might be

more clearly expressed as a function of the power to detect the QTL rather than the heritability

due to the QTL, and so heritabilities were chosen to give estimated power of 0.3, 0.4, . . . , 0.9,

where power was defined as the probability of achieving a LOD score of at least 3. These

heritabilities were estimated via R/qtlDesign (SEN et al. 2005), an add-on package to the R

statistical software (IHAKA and GENTLEMAN 1996). Our targeted values for power, calculated

with R/qtlDesign, differed somewhat from the power estimated from our simulation results, as
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we defined power to be the chance of a LOD score≥ 3 somewhere on the chromosome,

whereas R/qtlDesign defines it to be the chance of a LOD score≥ 3 at the QTL. The results

will be presented below using the power seen in our simulations.

The position of the QTL was fixed at a position equidistant between two markers and near

the center of the chromosome. For the marker spacings of 1, 2,10, and 20 cM, the QTL was

placed at 50, 49, 45 and 50 cM, respectively. For each setting(of cross type, sample size,

marker density, and QTL effect), 100,000 simulation replicates were performed.

For each simulation replicate, standard interval mapping was performed to obtain the LOD

curve at 1 cM steps along the chromosome. Rather than investigate the coverage of the LOD

support and Bayes credible intervals for particular choices of the drop in LOD and the nominal

Bayes fraction, we chose to estimate the drop in LOD and the nominal Bayes fraction for

which the two types of intervals would attain 95% coverage. These values could be obtained

with little additional effort. At each simulation replicate, we kept track of the difference in the

LOD score at the MLE and at the true location of the QTL. The 95th percentile of these

differences is the value to drop in a LOD support interval in order to attain 95% coverage. A

similar trick applies for the Bayes credible intervals. Note that here we are using a definition

for the confidence interval that can lead to a set of disjoint intervals, rather than a single

contiguous interval, and so the results are somewhat conservative.
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RESULTS

Distribution of the MLE of QTL location: Our initial simulation study, comprising

10,000 replicates with a QTL at each of 0, 1, 2, . . . , 100 cM on a chromosome of length

100 cM, allows us to inspect the distribution of the MLE of QTLlocation and the dependence

of this distribution on the location of the QTL relative to the markers. The simulations used a

backcross of 200 individuals, 11 equally spaced markers (10cM spacing), and heritability due

to the single QTL at 10%.

Figure 2 displays the distribution of the MLE of QTL position, θ̂, as a function of the true

location of the QTL,θ, for θ = 45, 46, . . . , 50. The most striking feature of these distributions

is the clear tendency for thêθ to occur exactly at the marker loci. For example, in the case that

the QTL is at 49 cM, immediately adjacent to a marker, there isa far greater chance that the

QTL is estimated to be at the marker rather than at the true location of the QTL. A similar

pattern was seen for other values ofθ. The standard error (SE) of̂θ is smallest when the QTL

is at a marker, and is∼25% larger when the QTL is in the center of the interval between

markers. When the QTL is near one of the ends of the chromosome, θ̂ exhibits considerable

bias, as we do not examine positions beyond the terminal markers on the chromosome. We

calculated the LOD score at 1 cM steps along the chromosome, and so estimated QTL position

only to within 1 cM. If calculations were performed on a more dense grid, the tendency for the

MLE to occur precisely at the markers would be even more striking.

The dependence of the distribution ofθ̂ on the position of the QTL relative to the markers,

both with respect to the large mass placed at the markers and the variation in the SE of̂θ, will

be seen to cause a breakdown in the performance of the bootstrap for this problem.

Coverage vs. true QTL location:Performance of a confidence interval is generally
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assessed by its coverage (the probability that it contains the true parameter value) as a function

of the true parameter. Ideally, a 95% confidence interval shows constant 95% coverage,

regardless of the true parameter value. In Figure 3, coverage of the 95% bootstrap confidence

interval (in black), 1-LOD support interval (in red) and theapproximate 95% Bayes credible

interval (in blue) are displayed as a function of the true location of the QTL. The bootstrap

confidence intervals shows extremely high coverage (∼99%) when the true QTL is at a

marker, low coverage (∼92.5%) when the QTL is right next to a marker, and above nominal

coverage when the QTL is exactly between markers. Coverage of the 1-LOD support and

approximate 95% Bayes credible intervals does not fluctuateas widely, though it is highest

when the QTL is at a marker. Note that the SEs of our estimates of coverage are∼0.3%.

Coverage vs. estimated QTL location:It is also of interest to consider coverage as a

function of the estimated QTL location,θ̂. In our simulations, we performed 10,000 replicates

for each of the 101 possible positions of the QTL; here we consider the portion of those

1,010,000 simulation replicates in which the MLE was attained, for example, at 50 cM, and

calculate the proportion of those replicates in which each type of confidence interval contained

the true parameter value. This is an unorthodox mixture of Bayes and frequentist statistics.

The coverage of a confidence interval is a quantity of interest only to frequentists; here we are

taking the location of the QTL to be uniformly distributed onthe positions 0, 1, 2, . . . , 100 cM,

and inspecting the posterior probability, given the observed estimate of the QTL location, that

the interval covers its true parameter value. Note that, across the 1,010,000 simulation

replicates, each possible value ofθ̂ was observed at least 6700 times, and so the SEs of our

estimates of coverage as a function ofθ̂ are∼0.4%.

Coverage as a function of the estimated location of the QTL isdisplayed in Figure 4. These
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results provide a qualitatively different perspective from those of coverage vs.θ, shown in

Figure 3. While coverage of the bootstrap confidence intervals is high when the QTL is at a

marker (see Figure 3), coverage is low (∼92%) when the QTL is estimated to be at a marker.

Coverage of the 1-LOD support interval and approximate 95% Bayes credible interval is less

variable as a function of̂θ, and is entirely above the nominal level, 95%, with the Bayes

credible interval exhibiting slightly less variability than the LOD support interval.

We view this perspective (coverage of a confidence interval conditional on the observed

estimate,̂θ) as the more relevant one for the user of a confidence interval. One does not know

the true location of the QTL, but does know one’s estimate of that location, and so coverage as

a function of the observed estimate is of greatest interest.But it is from this perspective that

coverage of the bootstrap confidence intervals looks worst.While coverage is low only when

the estimated location of the QTL is at a marker, it is quite low in that case, and, as we’ve seen,

that is often the case.

Interval widths: Another important feature of a confidence interval is its width: one

prefers intervals to be as small as possible, while maintaining the appropriate level of

coverage. Averaging over all possible values ofθ, the 95% bootstrap confidence interval,

1-LOD support intervals and 95% Bayes credible intervals had average widths of 45, 24, and

29 cM, respectively. When the QTL was not close to the end of the chromosome, the 1-LOD

support intervals were more than 40% smaller than the bootstrap confidence intervals about

half of the time. The approximate 95% Bayes credible intervals and the 1-LOD support

intervals were quite similar in width. The 1-LOD support and95% Bayes credible intervals

show not just better coverage probabilities than the 95% bootstrap intervals (see Figures 3 and

4), but are also generally smaller.
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Coverage with varying cross type, sample size, marker density and QTL effect: As

described above, coverage of the 95% bootstrap confidence intervals varied greatly according

to the position of the QTL relative to the genetic markers; the 1-LOD support and 95% Bayes

credible intervals, on the other hand, exhibited relatively stable coverage across the

chromosome. We thus omitted the bootstrap confidence intervals from further consideration,

but sought a more complete characterization of the performance of the LOD support intervals

and the approximate Bayes credible intervals, as a functionof sample size, marker density, and

QTL effect, and considering both a backcross and an intercross.

Rather than study the coverage of the intervals for a fixed drop in LOD or nominal Bayes

fraction, we sought the values that would give 95% coverage at different settings of the

parameters of interest. The value to drop in LOD in order for the coverage of the LOD support

interval to have 95% coverage in a backcross is displayed in Figure 5A. The results are

displayed as a function of the size of the effect of the QTL, which has been reparameterized as

the power to give a LOD score of at least 3. (The displayed values for the power were

estimated from 100,000 simulation replicates at each point, and so have standard error

<0.2%.) The black and red curves correspond to sample sizes of200 and 500, respectively. As

seen in the figure, sample size has little effect on the appropriate drop in LOD to give 95%

coverage, for a given power to detect the QTL. Of course, the heritability due to the QTL that

corresponds to a particular power is quite different for thetwo sample sizes. The biggest effect

seen concerns the spacing of markers: one must drop∼1.5 in LOD to attain 95% coverage

when markers are at a 1 cM spacing, but need drop only∼1.2 in LOD if the markers are at a

10 cM spacing. A slightly smaller drop is required when the QTL has a larger effect.

The nominal Bayes fractions at which the approximate Bayes credible intervals had 95%
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coverage in a backcross are displayed in Figure 5B. Again, sample size has little effect, except

in the case of very dense markers. The effect of marker spacing and of the size of the QTL

effect is seen to be in the opposite direction for the Bayes intervals versus the LOD support

intervals. A greater nominal Bayes fraction is needed for sparse markers and for a larger QTL

effect.

Figures 5C and 5D show the corresponding results for an intercross. A greater drop in

LOD is required in order for the LOD support interval to have 95% coverage in the intercross,

and the QTL effect appears to have a somewhat greater influence on the appropriate value to

drop. Sample size is again seen to have little effect, and thegreatest influence comes from the

marker spacing, with a greater drop in LOD required in the case of more densely spaced

markers. There is remarkably little variation in the appropriate nominal Bayes fraction so that

the approximate Bayes credible interval has 95% coverage inan intercross; for all sample

sizes, marker spacings, and QTL effects, the appropriate nominal Bayes fraction was 96–97%.

These results suggest that, for the Bayes intervals, the useof 96.5% for a backcross and

97% for an intercross will provide greater than 95% coveragefor all possible cases. For the

LOD support intervals, if one drops by 1.5 for a backcross and1.8 for an intercross, coverage

will be maintained at greater than 95%. The actual coverage obtained with these choices are

shown in Figure 6. The Bayes intervals are seen to be particularly attractive, as they exhibit

quite stable coverage with sample size, marker density, andQTL effect.
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DISCUSSION

We have shown that coverage of bootstrap confidence intervals for QTL location depends

critically upon the location of the QTL relative to the typedgenetic markers. Coverage is high

when the QTL is at a marker but can be low when the QTL is immediately adjacent to a

marker (see Figure 3). Especially interesting results wereobserved in the consideration of

coverage as a function of the estimated location of the QTL, taking the true location of the

QTL to be uniformly distributed along the chromosome. This perspective is most relevant for

the user of such confidence intervals, and indicates poor performance of the bootstrap

confidence intervals: coverage is quite far below the nominal level when the QTL is estimated

to be at a marker (see Figure 4). The bootstrap confidence intervals were also seen to be much

wider than the LOD support and approximate Bayes credible intervals.

Our results are similar to those of WALLING et al. (1998, 2002), but our conclusions are

markedly different. It is important to point out that WALLING et al. (1998, 2002) used

Haley-Knott regression (HALEY and KNOTT 1992), whereas we have focused on standard

interval mapping (LANDER and BOTSTEIN 1989), using maximum likelihood via the EM

algorithm. While it was not mentioned above, we did include the use of Haley-Knott regression

in our initial simulation study, and found similar results by the two methods (data not shown).

Bootstrap methods have desirable properties in a wide variety of statistical problems.

However, modifications to the bootstrap are necessary for problems that are not classically

regular (BERAN 2003), and the QTL mapping problem is not regular (KONG and WRIGHT

1994, SIEGMUND 2004). Thus, our finding of inadequate bootstrap performance in QTL

mapping is consistent with theory.

The poor performance of bootstrap confidence intervals for QTL location derives from the
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unusual behavior of the MLE of QTL location: the MLE has a tendency to coincide with a

marker position (see Figure 2 and KONG and WRIGHT 1994), and its SE varies greatly

according to the location of the QTL relative to the markers.Appropriate performance of the

percentile-based nonparametric bootstrap confidence intervals (proposed, for this context, by

V ISSCHERet al. (1996), and studied herein) generally requires the existence of some

monotone transformationh(·) such thath(θ̂) − h(θ) has the same symmetric continuous

distribution for allθ (SHAO and TU 1995, pg 132). The tendency of the MLE to occur at a

marker indicates that no such transformation exists for this problem.

An alternative heuristic for understanding the breakdown of the bootstrap in this problem is

as follows: we hope to approximate the sampling distribution,f(θ̂ | θ), by the bootstrap

distribution,g(θ̂∗ | θ̂). But the bootstrap distribution better reflects the sampling distribution

evaluated at the observed estimate,f(· | θ̂), than it does the target,f(· | θ). That the MLE is

most precise when the QTL is at a marker, and is less precise when the QTL is between

markers, indicates that the bootstrap distribution will provide an overly optimistic view of our

understanding of the location of the QTL in those cases in which we have estimated the QTL

to be at a marker.

WALLING et al. (1998) also assessed the performance of the parametric bootstrap for this

problem; rather than resampling from the observed data, onesimulates new data taking one’s

estimate of the QTL location to be the true location. They obtained the surprising result that

the parametric bootstrap performed more poorly than the nonparametric bootstrap; the result is

surprising, because when one’s model is correct (as it was intheir simulation study), the

parametric bootstrap would be expected to give better performance than the nonparametric

bootstrap. This result can now be clearly understood. In theparametric bootstrap, the bootstrap
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distribution on which the confidence interval is based is simply the sampling distribution of the

estimate in the case that the QTL is located at the observed estimate. Thus, when the QTL is

estimated to be at a marker, the parametric bootstrap will provide an overly optimistic view of

the precision of that estimate.

The tendency of the MLE for QTL location to occur precisely ata genetic marker (see

Figure 2) is a major contributor to the failure of the bootstrap in this context. Our explanation

of the cause of this behavior is as follows. The profile likelihood exhibits cusps at the markers.

(Its first derivative is not continuous at the markers.) Thisis the result of the fact that, in the

case of complete genotype data at the markers, and with the assumption of no crossover

interference, the likelihood to the left of the marker incorporates data on the marker to the left

but not that for the marker to the right, while the likelihoodto the right of a marker

incorporates data on the marker to the right but not that for the marker to the left. The abrupt

change in the first derivative of the profile likelihood at themarkers appears to lead to a greater

chance of a change in the direction of the profile likelihood,and so a greater chance that the

MLE occurs precisely at a marker.

It should be emphasized that these results were obtained in asingle setting: a backcross of

200 individuals, equally spaced markers at a 10 cM spacing, and heritability due to the QTL at

10%. The behavior of the bootstrap seen here may not hold generally. In fact, for a cross with

very dense markers and a QTL of not too strong effect, the bootstrap would likely behave

reasonably. However, the setting in which our simulations were conducted is not unreasonable,

and that the bootstrap performed so poorly here supports thegeneral conclusion that it should

not be used.

It should also be emphasized that we have considered only percentile-based nonparametric
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bootstrap confidence intervals, as that was the approach recommended by VISSCHERet al.

(1996). Other forms of bootstrap might be found to work in this context. For example one

might use a bootstrap to calibrate the LOD support or approximate Bayes credible intervals.

However, the good performance of the approximate Bayes credible interval suggests that the

computational effort that must be expended in any bootstrapmay not be necessary.

We have focused on the simplest possible QTL model: a single QTL with normally

distributed residual variation. This simple model is not likely to hold in practice. An especially

important departure concerns the presence of multiple linked QTLs. A confidence interval for

QTL location derived from the results of analysis using single-QTL models has little meaning

if there exist multiple QTLs on the chromosome. The LOD support and Bayes credible

intervals have obvious extensions for the case of multiple QTLs; their performance, especially

in the case of multiple linked QTLs, deserves further study.

While we have shown that bootstrap confidence intervals for QTL location perform poorly

and so should not be used in this context, the LOD support and approximate Bayes credible

intervals were seen to behave appropriately. This is in broad agreement with DUPUIS and

SIEGMUND (1999). They studied the performance of LOD support and Bayes credible

intervals, focusing on the widths of the intervals. They found that when LOD support and

Bayes credible intervals had similar coverage, their widths were generally comparable. For

LOD intervals to have the target coverage properties, the LOD drop has to be adjusted, while

the Bayes intervals give consistent coverage for a range of marker densities and QTL effects.

Thus, the approximate Bayes credible intervals are particularly attractive; a nominal 96.5 or

97% Bayes credible interval was seen to exhibit coverage near 95% for different sample sizes,

marker densities, and sizes of QTL effect.
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Finally, we wish to emphasize that 95% is not a magic number, and investigators may wish

to be more conservative (seeking, for example, 99% coverage), so that, for example, the

formation of a congenic line does not miss the true location of the QTL.
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FIGURE LEGENDS

Figure 1. Results for the chromosome 4 data of SUGIYAMA et al (2001).A. The LOD curve and

the 1.5-LOD support interval. Tick marks at the bottom of thefigure indicate the locations

of the genetic markers.B. A histogram of the estimated QTL locations in 10,000 bootstrap

replicates, and the 95% bootstrap confidence interval, calculated by the method of VISSCHER

et al. (1996).

Figure 2. Estimated distribution of the MLE of QTL location,̂θ, as a function of the true loca-

tion of the QTL,θ, for θ varying from 45 to 50. The results are based on 10,000 simulation

replicates of a backcross with 200 individuals for a chromosome of length 100 cM and having

11 equally spaced markers, and with the heritability due to the QTL at 10%.

Figure 3. Coverage of 95% bootstrap confidence intervals (black), 1-LOD support intervals

(red) and approximate 95% Bayes credible intervals (blue) and as a function of the true QTL

position,θ. The dashed vertical gray lines denote marker positions on the chromosome.

Figure 4. Coverage of 95% bootstrap confidence intervals (black), 1-LOD support intervals

(red) and approximate 95% Bayes credible intervals (blue) as a function of the MLE of QTL

position,θ̂. The dashed vertical gray lines denote marker positions on the chromosome.

Figure 5. Estimated amount to drop in a LOD support interval (A andC) and the nominal

Bayes coverage for the approximate Bayes credible interval(B andD) to give 95% coverage,

on the basis of 100,000 simulation replicates. Backcross (A andB) and intercross (C andD)

experiments with either 200 (black curves) or 500 (red curves) individuals were considered.

The line types indicate different possible marker spacings. Values are plotted as a function of
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the effect of the QTL, scaled according to the power to detectthe QTL.

Figure 6. Coverage of the 1.5-LOD support interval in a backcross (A), the 96.5% Bayes

interval in a backcross (B), the 1.8-LOD support interval in an intercross (C), and the 97%

Bayes interval in an intercross (D), on the basis of 100,000 simulation replicates. The black

curves are for 200 individuals; the red curves are for 500 individuals. The line types indicate

different possible marker spacings. Values are plotted as afunction of the effect of the QTL,

scaled according to the power to detect the QTL.
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Figure 1. Results for the chromosome 4 data of SUGIYAMA et al (2001).A. The LOD curve
and the 1.5-LOD support interval. Tick marks at the bottom ofthe figure indicate the locations
of the genetic markers.B. A histogram of the estimated QTL locations in 10,000 bootstrap
replicates, and the 95% bootstrap confidence interval, calculated by the method of VISSCHER

et al. (1996).
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Figure 2. Estimated distribution of the MLE of QTL location,̂θ, as a function of the true
location of the QTL,θ, for θ varying from 45 to 50. The results are based on 10,000 simulation
replicates of a backcross with 200 individuals for a chromosome of length 100 cM and having
11 equally spaced markers, and with the heritability due to the QTL at 10%.
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Figure 3. Coverage of 95% bootstrap confidence intervals (black), 1-LOD support intervals
(red) and approximate 95% Bayes credible intervals (blue) and as a function of the true QTL
position,θ. The dashed vertical gray lines denote marker positions on the chromosome.

27
Hosted by The Berkeley Electronic Press



0 20 40 60 80 100

90

92

94

96

98

100

Estimated QTL location (cM)

C
ov

er
ag

e 
(%

)

Figure 4. Coverage of 95% bootstrap confidence intervals (black), 1-LOD support intervals
(red) and approximate 95% Bayes credible intervals (blue) as a function of the MLE of QTL
position,θ̂. The dashed vertical gray lines denote marker positions on the chromosome.
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Figure 5. Estimated amount to drop in a LOD support interval (A andC) and the nominal
Bayes coverage for the approximate Bayes credible interval(B andD) to give 95% coverage,
on the basis of 100,000 simulation replicates. Backcross (A andB) and intercross (C andD)
experiments with either 200 (black curves) or 500 (red curves) individuals were considered.
The line types indicate different possible marker spacings. Values are plotted as a function of
the effect of the QTL, scaled according to the power to detectthe QTL.
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Figure 6. Coverage of the 1.5-LOD support interval in a backcross (A), the 96.5% Bayes
interval in a backcross (B), the 1.8-LOD support interval in an intercross (C), and the 97%
Bayes interval in an intercross (D), on the basis of 100,000 simulation replicates. The black
curves are for 200 individuals; the red curves are for 500 individuals. The line types indicate
different possible marker spacings. Values are plotted as afunction of the effect of the QTL,
scaled according to the power to detect the QTL.
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