679 research outputs found

    A high-gain Quantum free-electron laser: emergence & exponential gain

    Full text link
    We derive an effective Dicke model in momentum space to describe collective effects in the quantum regime of a free-electron laser (FEL). The resulting exponential gain from a single passage of electrons allows the operation of a Quantum FEL in the high-gain mode and avoids the experimental challenges of an X-ray FEL oscillator. Moreover, we study the intensity fluctuations of the emitted radiation which turn out to be super-Poissonian

    High-gain quantum free-electron laser: long-time dynamics and requirements

    Get PDF
    We solve the long-time dynamics of a high-gain free-electron laser in the quantum regime. In this regime each electron emits at most one photon on average, independently of the initial field. In contrast, the variance of the photon statistics shows a qualitatively different behavior for different initial states of the field. We find that the realization of a seeded Quantum FEL is more feasible than self-amplified spontaneous emission

    Dynamics of viscous amphiphilic films supported by elastic solid substrates

    Full text link
    The dynamics of amphiphilic films deposited on a solid surface is analyzed for the case when shear oscillations of the solid surface are excited. The two cases of surface- and bulk shear waves are studied with film exposed to gas or to a liquid. By solving the corresponding dispersion equation and the wave equation while maintaining the energy balance we are able to connect the surface density and the shear viscocity of a fluid amphiphilic overlayer with experimentally accessible damping coefficients, phase velocity, dissipation factor and resonant frequency shifts of shear waves.Comment: 19 pages, latex, 3 figures in eps-forma

    Surface Oscillations in Overdense Plasmas Irradiated by Ultrashort Laser Pulses

    Full text link
    The generation of electron surface oscillations in overdense plasmas irradiated at normal incidence by an intense laser pulse is investigated. Two-dimensional (2D) particle-in-cell simulations show a transition from a planar, electrostatic oscillation at 2ω2\omega, with ω\omega the laser frequency, to a 2D electromagnetic oscillation at frequency ω\omega and wavevector k>ω/ck>\omega/c. A new electron parametric instability, involving the decay of a 1D electrostatic oscillation into two surface waves, is introduced to explain the basic features of the 2D oscillations. This effect leads to the rippling of the plasma surface within a few laser cycles, and is likely to have a strong impact on laser interaction with solid targets.Comment: 9 pages (LaTeX, Revtex4), 4 GIF color figures, accepted for publication in Phys. Rev. Let

    Quantum and classical phase-space dynamics of a free-electron laser

    Get PDF
    In a quantum mechanical description of the free-electron laser (FEL) the electrons jump on discrete momentum ladders, while they follow continuous trajectories according to the classical description. In order to observe the transition from quantum to classical dynamics, it is not sufficient that many momentum levels are involved. Only if additionally the initial momentum spread of the electron beam is larger than the quantum mechanical recoil, caused by the emission and absorption of photons, the quantum dynamics in phase space resembles the classical one. Beyond these criteria, quantum signatures of averaged quantities like the FEL gain might be washed out

    Upgraded sublimation energy determination procedure for icy films

    Full text link
    “NOTICE: this is the author’s version of a work that was accepted for publication in . Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in VACUUM, [VOL 86, ISSUE 12, (2012-06)] DOI10.1016/j.vacuum.2012.05.010¨A method to determine the sublimation energy of a bulk ice in high vacuum systems, allowing other simultaneous analysis techniques, is presented. Variation in frequency of a quartz crystal microbalance, due to sublimating material, during a zeroth-order desorption consents to obtain this energy. CO 2 sublimation energy is obtained to check this method, its value is coherent with that reported in the literature. Our method permits to simplify the setup used so far by other authors, and to obtain relevant parameters for ices simultaneously. The procedure explained here corrects the temperature frequency dependence of the microbalance and the effect of contaminants by using a unique microbalance. © 2012 Elsevier Ltd. All rights reserved.This work was supported by the Ministerio de Educacion y Ciencia (Co-financed by FEDER funds) AYA 2004-05382 and AYA 2007-65899.Luna Molina, R.; Millán Verdú, C.; Domingo Beltran, M.; Santonja Moltó, MDC.; Satorre Aznar, MÁ. (2012). Upgraded sublimation energy determination procedure for icy films. Vacuum. 86(12):1969-1973. https://doi.org/10.1016/j.vacuum.2012.05.010S19691973861

    Role of surface roughness in hard x-ray emission from femtosecond laser produced copper plasmas

    Get PDF
    The hard x-ray emission in the energy range of 30-300 keV from copper plasmas produced by 100 fs, 806 nm laser pulses at intensities in the range of 10151016^{15}-10^{16} W cm2^{-2} is investigated. We demonstrate that surface roughness of the targets overrides the role of polarization state in the coupling of light to the plasma. We further show that surface roughness has a significant role in enhancing the x-ray emission in the above mentioned energy range.Comment: 5 pages, 4 figures, to appear in Phys. Rev.

    Spectral shaping of laser generated proton beams

    Get PDF
    The rapid progress in the field of laser particle acceleration has stimulated a debate about the promising perspectives of laser based ion beam sources. For a long time, the beams produced exhibited quasi-thermal spectra. Recent proof-of-principle experiments demonstrated that ion beams with narrow energy distribution can be generated from special target geometries. However, the achieved spectra were strongly limited in terms of monochromacity and reproducibility. We show that microstructured targets can be used to reliably produce protons with monoenergetic spectra above 2 MeV with less than 10% energy spread. Detailed investigations of the effects of laser ablation on the target resulted in a significant improvement of the reproducibility. Based on statistical analysis, we derive a scaling law between proton peak position and laser energy, underlining the suitability of this method for future applications. Both the quality of the spectra and the scaling law are well reproduced by numerical simulations

    Mass movement deposits in the 3.6 Ma sediment record of Lake El'gygytgyn, Far East Russian Arctic

    Get PDF
    This paper focuses on the characterization and genesis of mass movement deposits (MMDs) in the Quater- nary and Pliocene sediments of Lake El’gygytgyn, Far East Russian Arctic. Three partly overlapping holes were drilled into the 320 m long sediment record at International Conti- nental Scientific Drilling Program (ICDP) Site 5011-1 in the lake basin, recovering the Quaternary almost completely, and the Pliocene down to 3.6 Ma with 52 % recovery. Mass move- ment deposits were investigated in all three cores, based on macroscopical core descriptions, radiographic images, high- resolution magnetic susceptibility and gamma-ray density. Five different types of MMDs were identified: turbidites, grain-flow deposits, debrites, slumps and slides. These are formed by transitional mass movement processes, and thus can be co-generic. An initial slope failure is thought to trans- form into a debris flow that deforms frontal sediments, partly disintegrates and dilutes into a turbidity flow. Turbidites are by far the most frequent MMD type in the lake center. They occur throughout the record in all pelagic sedimentary fa- cies, but they are thinner in facies formed during cold cli- mate conditions. All other MMDs, by contrast, incise exclu- sively the pelagic facies deposited during warm climates. In the 123 m thick Quaternary composite sediment record 230 mass movement events are identified, comprising 33% of the sediment length. Turbidites contribute 93 % of the num- ber of Quaternary MMDs, but only 35 % of their thickness. In the Pliocene sediments between 123 and 320 m, 181 ad- ditional mass movement deposits are identified, which con- stitute ⇠ 33 % of the recovered sediments. The mean recur- rence interval for MMDs is 11 and 5 ka in the Quaternary and Pliocene, respectively

    Factors Associated with the Rapid and Durable Decline in Malaria Incidence in El Salvador, 1980-2017

    Get PDF
    A decade after the Global Malaria Eradication Program, El Salvador had the highest burden of malaria in Mesoamerica, with approximately 20% due to Plasmodium falciparum. A resurgence of malaria in the 1970s led El Salvador to alter its national malaria control strategy. By 1995, El Salvador recorded its last autochthonous P. falciparum case with fewer than 20 Plasmodium vivax cases annually since 2011. By contrast, its immediate neighbors continue to have the highest incidences of malaria in the region. We reviewed and evaluated the policies and interventions implemented by the Salvadoran National Malaria Program that likely contributed to this progress toward malaria elimination. Decentralization of the malaria program, early regional stratification by risk, and data-driven stratum-specific actions resulted in the timely and targeted allocation of resources for vector control, surveillance, case detection, and treatment. Weekly reporting by health workers and volunteer collaborators-distributed throughout the country by strata and informed via the national surveillance system-enabled local malaria teams to provide rapid, adaptive, and focalized program actions. Sustained investments in surveillance and response have led to a dramatic reduction in local transmission, with most current malaria cases in El Salvador due to importation from neighboring countries. Additional support for systematic elimination efforts in neighboring countries would benefit the region and may be needed for El Salvador to achieve and maintain malaria elimination. El Salvador's experience provides a relevant case study that can guide the application of similar strategies in other countries committed to malaria elimination
    corecore