204 research outputs found

    Fourteenth annual report of the Power Affiliates Program.

    Get PDF
    Includes bibliographical references

    Eighteenth annual report of the Power Affiliates Program.

    Get PDF
    Includes bibliographical references

    Twenty-eighth annual report of the Power Affiliates Program.

    Get PDF
    Includes bibliographical references

    Optoelectronic Oscillators for Communication Systems

    Full text link
    International audienceWe introduce and report recent developments on a novel five port optoelectronic voltage controlled oscillator consisting of a resonant tunneling diode (RTD) optical-waveguide integrated with a laser diode. The RTD-based optoelectronic oscillator (OEO) has both optical and electrical input and output ports, with the fifth port allowing voltage control. The RTD-OEO locks to reference radio-frequency (RF) sources by either optical or electrical injection locking techniques allowing remote synchronization, eliminating the need of impedance matching between traditional RF oscillators. RTD-OEO functions include generation, amplification and distribution of RF carriers, clock recovery, carrier recovery, modulation and demodulation and frequency synthesis. Self-injection locking operation modes, where small portions of the output electrical/optical signals are fed back into the electrical/optical input ports, are also proposed. The self-phase locked loop configuration can give rise to low-noise high-stable oscillations, not limited by the RF source performance and with no need of external optoelectronic conversion

    All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators

    Full text link
    We review our recent work on tunable, ultrahigh quality factor whispering-gallery-mode bottle microresonators and highlight their applications in nonlinear optics and in quantum optics experiments. Our resonators combine ultra-high quality factors of up to Q = 3.6 \times 10^8, a small mode volume, and near-lossless fiber coupling, with a simple and customizable mode structure enabling full tunability. We study, theoretically and experimentally, nonlinear all-optical switching via the Kerr effect when the resonator is operated in an add-drop configuration. This allows us to optically route a single-wavelength cw optical signal between two fiber ports with high efficiency. Finally, we report on progress towards strong coupling of single rubidium atoms to an ultra-high Q mode of an actively stabilized bottle microresonator.Comment: 20 pages, 24 figures. Accepted for publication in Applied Physics B. Changes according to referee suggestions: minor corrections to some figures and captions, clarification of some points in the text, added references, added new paragraph with results on atom-resonator interactio
    corecore