9,525 research outputs found

    Effects of vine rootstocks on chloride concentration in Sultana scions

    Get PDF
    Sultana vines in the field grafted on any one of a number of rootstocks being tested for compatibility showed substantially reduced petiole chloride as compared with ungrafted sultanas. Self grafted sultanas did not differ from ungrafted in chloride status. There were significant differences between the various effective rootstocks - the degree of reduction of chloride concentration was better than 50 per cent for Dogridge and 1613 stocks, but about 75 per cent for Salt Creek and 101-14

    Betaine, organic acids and inulin do not affect ileal and total tract nutrient digestibility or microbial fermentation in piglets

    Get PDF
    The study was conducted to investigate the effects of betaine alone or combined with organic acids and inulin on ileal and total tract nutrient digestibilities and intestinal microbial fermentation characteristics in piglets. In total, 24 four-week-old barrows with an average initial body weight of 6.7 kg were used in two consecutive experiments with 12 piglets each. Betaine, organic acids and inulin at a level of 0.2, 0.4 and 0.2%, respectively, or combinations of these supplements were added to the basal diet. The supplementation of betaine, organic acids and inulin or any of their combinations did not affect ileal and total tract nutrient digestibilities. The microbial fermentation products both at the ileal and faecal level were not affected by any of the treatments. In conclusion, combining betaine with organic acids and inulin did not have any associated effects on the variables that were measured

    Integrable lattices and their sublattices II. From the B-quadrilateral lattice to the self-adjoint schemes on the triangular and the honeycomb lattices

    Full text link
    An integrable self-adjoint 7-point scheme on the triangular lattice and an integrable self-adjoint scheme on the honeycomb lattice are studied using the sublattice approach. The star-triangle relation between these systems is introduced, and the Darboux transformations for both linear problems from the Moutard transformation of the B-(Moutard) quadrilateral lattice are obtained. A geometric interpretation of the Laplace transformations of the self-adjoint 7-point scheme is given and the corresponding novel integrable discrete 3D system is constructed.Comment: 15 pages, 6 figures; references added, some typos correcte

    Vibrational branching ratios and hyperfine structure of 11^{11}BH and its suitability for laser cooling

    Get PDF
    The simple structure of the BH molecule makes it an excellent candidate for direct laser cooling. We measure the branching ratios for the decay of the A1Π(v′=0){\rm A}^{1}\Pi (v'=0) state to vibrational levels of the ground state, X1Σ+{\rm X}^{1}\Sigma^{+}, and find that they are exceedingly favourable for laser cooling. We verify that the branching ratio for the spin-forbidden transition to the intermediate a3Π{\rm a}^{3}\Pi state is inconsequentially small. We measure the frequency of the lowest rotational transition of the X state, and the hyperfine structure in the relevant levels of both the X and A states, and determine the nuclear electric quadrupole and magnetic dipole coupling constants. Our results show that, with a relatively simple laser cooling scheme, a Zeeman slower and magneto-optical trap can be used to cool, slow and trap BH molecules.Comment: 7 pages, 5 figures. Updated analysis of A state hyperfine structure and other minor revision

    Prospects for measuring the electric dipole moment of the electron using electrically trapped polar molecules

    Full text link
    Heavy polar molecules can be used to measure the electric dipole moment of the electron, which is a sensitive probe of physics beyond the Standard Model. The value is determined by measuring the precession of the molecule's spin in a plane perpendicular to an applied electric field. The longer this precession evolves coherently, the higher the precision of the measurement. For molecules in a trap, this coherence time could be very long indeed. We evaluate the sensitivity of an experiment where neutral molecules are trapped electrically, and compare this to an equivalent measurement in a molecular beam. We consider the use of a Stark decelerator to load the trap from a supersonic source, and calculate the deceleration efficiency for YbF molecules in both strong-field seeking and weak-field seeking states. With a 1s holding time in the trap, the statistical sensitivity could be ten times higher than it is in the beam experiment, and this could improve by a further factor of five if the trap can be loaded from a source of larger emittance. We study some effects due to field inhomogeneity in the trap and find that rotation of the electric field direction, leading to an inhomogeneous geometric phase shift, is the primary obstacle to a sensitive trap-based measurement.Comment: 22 pages, 7 figures, prepared for Faraday Discussion 14

    Characterization of a cryogenic beam source for atoms and molecules

    Full text link
    We present a combined experimental and theoretical study of beam formation from a cryogenic buffer gas cell. Atoms and molecules are loaded into the cell by laser ablation of a target, and are cooled and swept out of the cell by a flow of cold helium. We study the thermalization and flow dynamics inside the cell and measure how the speed, temperature, divergence and extraction efficiency of the beam are influenced by the helium flow. We use a finite element model to simulate the flow dynamics and use the predictions of this model to interpret our experimental results.Comment: 10 pages, 14 figure

    Stochastic multi-channel lock-in detection

    Full text link
    High-precision measurements benefit from lock-in detection of small signals. Here we discuss the extension of lock-in detection to many channels, using mutually orthogonal modulation waveforms, and show how the the choice of waveforms affects the information content of the signal. We also consider how well the detection scheme rejects noise, both random and correlated. We address the particular difficulty of rejecting a background drift that makes a reproducible offset in the output signal and we show how a systematic error can be avoided by changing the waveforms between runs and averaging over many runs. These advances made possible a recent measurement of the electron's electric dipole moment.Comment: 11 pages, 3 figure

    A robust floating nanoammeter

    Full text link
    A circuit capable of measuring nanoampere currents while floating at voltages up to at least 25kV is described. The circuit relays its output to ground potential via an optical fiber. We particularly emphasize the design and construction techniques which allow robust operation in the presence of high voltage spikes and discharges.Comment: 5 pages, 2 figure

    Franck-Condon Factors and Radiative Lifetime of the A^{2}\Pi_{1/2} - X^{2}\Sigma^{+} Transition of Ytterbium Monoflouride, YbF

    Full text link
    The fluorescence spectrum resulting from laser excitation of the A^{2}\Pi_{1/2} - X^{2}\Sigma^{+} (0,0) band of ytterbium monofluoride, YbF, has been recorded and analyzed to determine the Franck-Condon factors. The measured values are compared with those predicted from Rydberg-Klein-Rees (RKR) potential energy curves. From the fluorescence decay curve the radiative lifetime of the A^{2}\Pi_{1/2} state is measured to be 28\pm2 ns, and the corresponding transition dipole moment is 4.39\pm0.16 D. The implications for laser cooling YbF are discussed.Comment: 5 pages, 5 figure
    • …
    corecore