We present a combined experimental and theoretical study of beam formation
from a cryogenic buffer gas cell. Atoms and molecules are loaded into the cell
by laser ablation of a target, and are cooled and swept out of the cell by a
flow of cold helium. We study the thermalization and flow dynamics inside the
cell and measure how the speed, temperature, divergence and extraction
efficiency of the beam are influenced by the helium flow. We use a finite
element model to simulate the flow dynamics and use the predictions of this
model to interpret our experimental results.Comment: 10 pages, 14 figure