67 research outputs found

    DNGR-1-tracing marks an ependymal cell subset with damage-responsive neural stem cell potential

    Get PDF
    Cells with latent stem ability can contribute to mammalian tissue regeneration after damage. Whether the central nervous system (CNS) harbors such cells remains controversial. Here, we report that DNGR-1 lineage tracing in mice identifies an ependymal cell subset, wherein resides latent regenerative potential. We demonstrate that DNGR-1-lineage-traced ependymal cells arise early in embryogenesis (E11.5) and subsequently spread across the lining of cerebrospinal fluid (CSF)-filled compartments to form a contiguous sheet from the brain to the end of the spinal cord. In the steady state, these DNGR-1-traced cells are quiescent, committed to their ependymal cell fate, and do not contribute to neuronal or glial lineages. However, trans-differentiation can be induced in adult mice by CNS injury or in vitro by culture with suitable factors. Our findings highlight previously unappreciated ependymal cell heterogeneity and identify across the entire CNS an ependymal cell subset wherein resides damage-responsive neural stem cell potential

    Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research

    Get PDF
    Mass spectrometry (MS) techniques, because of their sensitivity and selectivity, have become methods of choice to characterize the human metabolome and MS-based metabolomics is increasingly used to characterize the complex metabolic effects of nutrients or foods. However progress is still hampered by many unsolved problems and most notably the lack of well established and standardized methods or procedures, and the difficulties still met in the identification of the metabolites influenced by a given nutritional intervention. The purpose of this paper is to review the main obstacles limiting progress and to make recommendations to overcome them. Propositions are made to improve the mode of collection and preparation of biological samples, the coverage and quality of mass spectrometry analyses, the extraction and exploitation of the raw data, the identification of the metabolites and the biological interpretation of the results

    Identification of Dmrt2a downstream genes during zebrafish early development using a timely controlled approach

    Get PDF
    This research was supported by FCT (Portugal) grant (PTDC/SAU-BID/119627/2010) given to L.S. L.S. was supported by an IF contract from FCT (Portugal). R.A.P. was supported by a PhD fellowship (SFRH/BD/87607/2012) from FCT (Portugal). Publication was sponsored by LISBOA-01-0145-FEDER-007391, project co-funded by FEDER through POR Lisboa 2020 - Programa Operacional Regional de Lisboa, PORTUGAL 2020 and by Fundacao para a Ciencia e a Tecnologia.BACKGROUND: Dmrt2a is a zinc finger like transcription factor with several roles during zebrafish early development: left-right asymmetry, synchronisation of the somite clock genes and fast muscle differentiation. Despite the described functions, Dmrt2a mechanism of action is unknown. Therefore, with this work, we propose to identify Dmrt2a downstream genes during zebrafish early development. RESULTS: We generated and validated a heat-shock inducible transgenic line, to timely control dmrt2a overexpression, and dmrt2a mutant lines. We characterised dmrt2a overexpression phenotype and verified that it was very similar to the one described after knockdown of this gene, with left-right asymmetry defects and desynchronisation of somite clock genes. Additionally, we identified a new phenotype of somite border malformation. We generated several dmrt2a mutant lines, but we only detected a weak to negligible phenotype. As dmrt2a has a paralog gene, dmrt2b, with similar functions and expression pattern, we evaluated the possibility of redundancy. We found that dmrt2b does not seem to compensate the lack of dmrt2a. Furthermore, we took advantage of one of our mutant lines to confirm dmrt2a morpholino specificity, which was previously shown to be a robust knockdown tool in two independent studies. Using the described genetic tools to perform and validate a microarray, we were able to identify six genes downstream of Dmrt2a: foxj1b, pxdc1b, cxcl12b, etv2, foxc1b and cyp1a. CONCLUSIONS: In this work, we generated and validated several genetic tools for dmrt2a and identified six genes downstream of this transcription factor. The identified genes will be crucial to the future understanding of Dmrt2a mechanism of action in zebrafish.publishersversionpublishe

    Metabolomic analysis of human disease and its application to the eye

    Get PDF
    Metabolomics, the analysis of the metabolite profile in body fluids or tissues, is being applied to the analysis of a number of different diseases as well as being used in following responses to therapy. While genomics involves the study of gene expression and proteomics the expression of proteins, metabolomics investigates the consequences of the activity of these genes and proteins. There is good reason to think that metabolomics will find particular utility in the investigation of inflammation, given the multi-layered responses to infection and damage that are seen. This may be particularly relevant to eye disease, which may have tissue specific and systemic components. Metabolomic analysis can inform us about ocular or other body fluids and can therefore provide new information on pathways and processes involved in these responses. In this review, we explore the metabolic consequences of disease, in particular ocular conditions, and why the data may be usefully and uniquely assessed using the multiplexed analysis inherent in the metabolomic approach

    Understanding the United States and Brazil’s response to obesity: institutional conversion, policy reform, and the lessons learned

    Get PDF

    Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review

    Get PDF

    Violence against children in Latin America and Caribbean countries: a comprehensive review of national health sector efforts in prevention and response

    Full text link
    corecore