51 research outputs found

    Bespoke Photoreductants: Tungsten Arylisocyanides

    Get PDF
    Modular syntheses of oligoarylisocyanide ligands that are derivatives of 2,6-diisopropylphenyl isocyanide (CNdipp) have been developed; tungsten complexes incorporating these oligoarylisocyanide ligands exhibit intense metal-to-ligand charge-transfer visible absorptions that are red-shifted and more intense than those of the parent W(CNdipp)_6 complex. Additionally, these W(CNAr)_6 complexes have enhanced excited-state properties, including longer lifetimes and very high quantum yields. The decay kinetics of electronically excited W(CNAr)_6 complexes (*W(CNAr)_6) show solvent dependences; faster decay is observed in higher dielectric solvents. *W(CNAr)_6 lifetimes are temperature dependent, suggestive of a strong coupling nonradiative decay mechanism that promotes repopulation of the ground state. Notably, *W(CNAr)_6 complexes are exceptionally strong reductants: [W(CNAr)_6]+/*W(CNAr)_6 potentials are more negative than −2.7 V vs [Cp_2Fe]^+/Cp_2Fe

    Two-photon spectroscopy of tungsten(0) arylisocyanides using nanosecond-pulsed excitation

    Get PDF
    The two-photon absorption (TPA) cross sections (δ) for tungsten(0) arylisocyanides (W(CNAr)6) were determined in the 800–1000 nm region using two-photon luminescence (TPL) spectroscopy. The complexes have high TPA cross sections, in the range 1000–2000 GM at 811.8 nm. In comparison, the cross section at 811.8 nm for tris-(2,2′-bipyridine)ruthenium(II), [Ru(bpy)_3]^(2+), is 7 GM. All measurements were performed using a nanosecond-pulsed laser system

    Electronic Excited States of Tungsten(0) Arylisocyanides

    Get PDF
    W(CNAryl)_6 complexes containing 2,6-diisopropylphenyl isocyanide (CNdipp) are powerful photoreductants with strongly emissive long-lived excited states. These properties are enhanced upon appending another aryl ring, e.g., W(CNdippPh^(OMe)_2)_6; CNdippPh^(OMe)_2 = 4-(3,5-dimethoxyphenyl)-2,6-diisopropylphenylisocyanide (Sattler et al. J. Am. Chem. Soc. 2015, 137, 1198−1205). Electronic transitions and low-lying excited states of these complexes were investigated by time-dependent density functional theory (TDDFT); the lowest triplet state was characterized by time-resolved infrared spectroscopy (TRIR) supported by density functional theory (DFT). The intense absorption band of W(CNdipp)_6 at 460 nm and that of W(CNdippPh^(OMe)_2)_6 at 500 nm originate from transitions of mixed ππ*(C≡N–C)/MLCT(W → Aryl) character, whereby W is depopulated by ca. 0.4 e– and the electron-density changes are predominantly localized along two equatorial molecular axes. The red shift and intensity rise on going from W(CNdipp)_6 to W(CNdippPh^(OMe)_2)_6 are attributable to more extensive delocalization of the MLCT component. The complexes also exhibit absorptions in the 300–320 nm region, owing to W → C≡N MLCT transitions. Electronic absorptions in the spectrum of W(CNXy)_6 (Xy = 2,6-dimethylphenyl), a complex with orthogonal aryl orientation, have similar characteristics, although shifted to higher energies. The relaxed lowest W(CNAryl)_6 triplet state combines ππ* excitation of a trans pair of C≡N–C moieties with MLCT (0.21 e–) and ligand-to-ligand charge transfer (LLCT, 0.24–0.27 e–) from the other four CNAryl ligands to the axial aryl and, less, to C≡N groups; the spin density is localized along a single Aryl–N≡C–W–C≡N–Aryl axis. Delocalization of excited electron density on outer aryl rings in W(CNdippPh^(OMe)_2)_6 likely promotes photoinduced electron-transfer reactions to acceptor molecules. TRIR spectra show an intense broad bleach due to ν(C≡N), a prominent transient upshifted by 60–65 cm^(–1), and a weak down-shifted feature due to antisymmetric C≡N stretch along the axis of high spin density. The TRIR spectral pattern remains unchanged on the femtosecond-nanosecond time scale, indicating that intersystem crossing and electron-density localization are ultrafast (<100 fs)

    Generation of Powerful Tungsten Reductants by Visible Light Excitation

    Get PDF
    The homoleptic arylisocyanide tungsten complexes, W(CNXy)_6 and W(CNIph)_6 (Xy = 2,6-dimethylphenyl, Iph = 2,6-diisopropylphenyl), display intense metal to ligand charge transfer (MLCT) absorptions in the visible region (400–550 nm). MLCT emission (λ_max ≈ 580 nm) in tetrahydrofuran (THF) solution at rt is observed for W(CNXy)6 and W(CNIph)_6 with lifetimes of 17 and 73 ns, respectively. Diffusion-controlled energy transfer from electronically excited W(CNIph)_6 (*W) to the lowest energy triplet excited state of anthracene (anth) is the dominant quenching pathway in THF solution. Introduction of tetrabutylammonium hexafluorophosphate, [Bun4N][PF_6], to the THF solution promotes formation of electron transfer (ET) quenching products, [W(CNIph)6]+ and [anth]^•–. ET from *W to benzophenone and cobalticenium also is observed in [Bun4N][PF6]/THF solutions. The estimated reduction potential for the [W(CNIph)6]^(+)/*W couple is −2.8 V vs Cp_(2)Fe^(+/0), establishing W(CNIph)_6 as one of the most powerful photoreductants that has been generated with visible light

    Assembly, characterization, and electrochemical properties of immobilized metal bipyridyl complexes on silicon(111) surface

    Get PDF
    Silicon(111) surfaces have been functionalized with mixed monolayers consisting of submonolayer coverages of immobilized 4-vinyl-2,2′-bipyridyl (1, vbpy) moieties, with the remaining atop sites of the silicon surface passivated by methyl groups. As the immobilized bipyridyl ligands bind transition metal ions, metal complexes can be assembled on the silicon surface. X-ray photoelectron spectroscopy (XPS) demonstrates that bipyridyl complexes of [Cp*Rh], [Cp*Ir], and [Ru(acac)2] were formed on the surface (Cp* is pentamethylcyclopentadienyl, acac is acetylacetonate). For the surface prepared with Ir, X-ray absorption spectroscopy at the Ir LIII edge showed an edge energy as well as post-edge features that were essentially identical with those observed on a powder sample of [Cp*Ir(bpy)Cl]Cl (bpy is 2,2′-bipyridyl). Charge-carrier lifetime measurements confirmed that the silicon surfaces retain their highly favorable photoelectronic properties upon assembly of the metal complexes. Electrochemical data for surfaces prepared on highly doped, n-type Si(111) electrodes showed that the assembled molecular complexes were redox active. However the stability of the molecular complexes on the surfaces was limited to several cycles of voltammetry

    Comparative analysis of glutaredoxin domains from bacterial opportunistic pathogens

    Get PDF
    NMR structures of the glutaredoxin (GLXR) domains from Br. melitensis and Ba. henselae have been determined as part of the SSGCID initiative. Comparison of the domains with known structures reveals overall structural similarity between these proteins and previously determined E. coli GLXR structures, with minor changes associated with the position of helix 1 and with regions that diverge from similar structures found in the closest related human homolog
    corecore