research

Bespoke Photoreductants: Tungsten Arylisocyanides

Abstract

Modular syntheses of oligoarylisocyanide ligands that are derivatives of 2,6-diisopropylphenyl isocyanide (CNdipp) have been developed; tungsten complexes incorporating these oligoarylisocyanide ligands exhibit intense metal-to-ligand charge-transfer visible absorptions that are red-shifted and more intense than those of the parent W(CNdipp)_6 complex. Additionally, these W(CNAr)_6 complexes have enhanced excited-state properties, including longer lifetimes and very high quantum yields. The decay kinetics of electronically excited W(CNAr)_6 complexes (*W(CNAr)_6) show solvent dependences; faster decay is observed in higher dielectric solvents. *W(CNAr)_6 lifetimes are temperature dependent, suggestive of a strong coupling nonradiative decay mechanism that promotes repopulation of the ground state. Notably, *W(CNAr)_6 complexes are exceptionally strong reductants: [W(CNAr)_6]+/*W(CNAr)_6 potentials are more negative than −2.7 V vs [Cp_2Fe]^+/Cp_2Fe

    Similar works