104 research outputs found

    Distribution, Hybridization, and Taxonomic Status of Two-lined Salamanders (\u3ci\u3eEurycea bislineata\u3c/i\u3e complex) in Virginia and West Virginia

    Get PDF
    We used three diagnostic protein markers to examine salamanders of the Eurycea bislineata complex at 80 localities in Virginia and West Virginia. Two groups were strongly differentiated and met at a narrow contact zone. Rare hybridization was observed as well as limited introgression up to 5 km north and 10 km south of the contact zone. At the contact zone, 1% F1, 2% F2, 32% backcross, and 66% parental genotypes were observed. This pattern of parapatric distribution with limited hybridization and introgression argues for the recognition of Eurycea bislineata and E. cirrigera as separate species

    Systematics of Desmognathus monticola

    Get PDF
    Undergraduate Basi

    Generation of Powerful Tungsten Reductants by Visible Light Excitation

    Get PDF
    The homoleptic arylisocyanide tungsten complexes, W(CNXy)_6 and W(CNIph)_6 (Xy = 2,6-dimethylphenyl, Iph = 2,6-diisopropylphenyl), display intense metal to ligand charge transfer (MLCT) absorptions in the visible region (400–550 nm). MLCT emission (λ_max ≈ 580 nm) in tetrahydrofuran (THF) solution at rt is observed for W(CNXy)6 and W(CNIph)_6 with lifetimes of 17 and 73 ns, respectively. Diffusion-controlled energy transfer from electronically excited W(CNIph)_6 (*W) to the lowest energy triplet excited state of anthracene (anth) is the dominant quenching pathway in THF solution. Introduction of tetrabutylammonium hexafluorophosphate, [Bun4N][PF_6], to the THF solution promotes formation of electron transfer (ET) quenching products, [W(CNIph)6]+ and [anth]^•–. ET from *W to benzophenone and cobalticenium also is observed in [Bun4N][PF6]/THF solutions. The estimated reduction potential for the [W(CNIph)6]^(+)/*W couple is −2.8 V vs Cp_(2)Fe^(+/0), establishing W(CNIph)_6 as one of the most powerful photoreductants that has been generated with visible light

    Feasibility study for a correlation electron cyclotron emission turbulence diagnostic based on nonlinear gyrokinetic simulations

    Get PDF
    This paper describes the use of nonlinear gyrokinetic simulations to assess the feasibility of a new correlation electron cyclotron emission (CECE) diagnostic that has been proposed for the Alcator C-Mod tokamak (Marmar et al 2009 Nucl. Fusion 49 104014). This work is based on a series of simulations performed with the GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545). The simulations are used to predict ranges of fluctuation level, peak poloidal wavenumber and radial correlation length of electron temperature fluctuations in the core of the plasma. The impact of antenna pattern and poloidal viewing location on measurable turbulence characteristics is addressed using synthetic diagnostics. An upper limit on the CECE sample volume size is determined. The modeling results show that a CECE diagnostic capable of measuring transport-relevant, long-wavelength (k[subscript θ]ρ[subscript s] < 0.5) electron temperature fluctuations is feasible at Alcator C-Mod.United States. Dept. of Energy (DE-FC02-C99ER54512-CMOD

    RESCUE OF HIPPO CO-ACTIVATOR YAP1 TRIGGERS DNA DAMAGE-INDUCED APOPTOSIS IN HEMATOLOGICAL CANCERS

    Get PDF
    Oncogene–induced DNA damage elicits genomic instability in epithelial cancer cells, but apoptosis is blocked through inactivation of the tumor suppressor p53. In hematological cancers, the relevance of ongoing DNA damage and mechanisms by which apoptosis is suppressed are largely unknown. We found pervasive DNA damage in hematologic malignancies including multiple myeloma, lymphoma and leukemia, which leads to activation of a p53–independent, pro-apoptotic network centered on nuclear relocalization of ABL1 kinase. Although nuclear ABL1 triggers cell death through its interaction with the Hippo pathway co–activator YAP1 in normal cells, we show that low YAP1 levels prevent nuclear ABL1–induced apoptosis in these hematologic malignancies. YAP1 is under the control of a serine–threonine kinase, STK4. Importantly, genetic inactivation of STK4 restores YAP1 levels, triggering cell death in vitro and in vivo. Our data therefore identify a novel synthetic–lethal strategy to selectively target cancer cells presenting with endogenous DNA damage and low YAP1 levels

    The discovery of I-BRD9, a selective cell active chemical probe for bromodomain containing protein 9 inhibition

    Get PDF
    Acetylation of histone lysine residues is one of the most well-studied post-translational modifications of chromatin, selectively recognized by bromodomain “reader” modules. Inhibitors of the bromodomain and extra terminal domain (BET) family of bromodomains have shown profound anticancer and anti-inflammatory properties, generating much interest in targeting other bromodomain-containing proteins for disease treatment. Herein, we report the discovery of I-BRD9, the first selective cellular chemical probe for bromodomain-containing protein 9 (BRD9). I-BRD9 was identified through structure-based design, leading to greater than 700-fold selectivity over the BET family and 200-fold over the highly homologous bromodomain-containing protein 7 (BRD7). I-BRD9 was used to identify genes regulated by BRD9 in Kasumi-1 cells involved in oncology and immune response pathways and to the best of our knowledge, represents the first selective tool compound available to elucidate the cellular phenotype of BRD9 bromodomain inhibition
    corecore