20 research outputs found

    Reduced serum level of leukocyte cell-derived chemotaxin 2 is associated with the presence of diabetic retinopathy

    Get PDF
    AbstractBackgroundVascular endothelial growth factor (VEGF) signaling is an important pathway in the development of diabetic retinopathy (DR). A recent report showed that leukocyte cell-derived chemotaxin 2 (LECT2) suppresses the VEGF signaling in endothelial cells. However, the clinical relevance of LECT2 in DR is unknown. This study aimed to investigate serum LECT2 levels and the presence of DR.MethodsThe study included 230 people with type 2 diabetes mellitus (DM), 95 with DR and 135 without DR. Serum LECT2 levels were measured using an enzyme-linked immunosorbent assay. Data were evaluated using Spearman's rank correlation, univariate and multivariate logistic regression.ResultsSerum LECT2 levels were significantly lower in participants with DM having DR than in those not having DR (35.6±14.9ng/ml vs. 44.5±17.6ng/ml, P<0.001). Spearman's rank correlation analysis revealed a significant association between serum LECT2 levels and the presence of DR (P<0.001). Multiple regression analysis revealed that serum LECT2 levels were independently related to DR (P<0.001).ConclusionsThese findings indicated that serum LECT2 level is negatively associated with the presence of DR and suggest that low circulating LECT2 level is a risk factor for DR

    A multicenter randomized controlled trial to evaluate the efficacy and safety of nelfinavir in patients with mild COVID-19

    Get PDF
    Nelfinavir, an orally administered inhibitor of human immunodeficiency virus protease, inhibits the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro. We conducted a randomized controlled trial to evaluate the clinical efficacy and safety of nelfinavir in patients with SARS-CoV-2 infection. We included unvaccinated asymptomatic or mildly symptomatic adult patients who tested positive for SARS-CoV-2 infection within 3 days before enrollment. The patients were randomly assigned (1:1) to receive oral nelfinavir (750 mg; thrice daily for 14 days) combined with standard-of-care or standard-of-care alone. The primary endpoint was the time to viral clearance, confirmed using quantitative reverse-transcription PCR by assessors blinded to the assigned treatment. A total of 123 patients (63 in the nelfinavir group and 60 in the control group) were included. The median time to viral clearance was 8.0 (95% confidence interval [CI], 7.0 to 12.0) days in the nelfinavir group and 8.0 (95% CI, 7.0 to 10.0) days in the control group, with no significant difference between the treatment groups (hazard ratio, 0.815; 95% CI, 0.563 to 1.182; P = 0.1870). Adverse events were reported in 47 (74.6%) and 20 (33.3%) patients in the nelfinavir and control groups, respectively. The most common adverse event in the nelfinavir group was diarrhea (49.2%). Nelfinavir did not reduce the time to viral clearance in this setting. Our findings indicate that nelfinavir should not be recommended in asymptomatic or mildly symptomatic patients infected with SARS-CoV-2. The study is registered with the Japan Registry of Clinical Trials (jRCT2071200023). IMPORTANCE The anti-HIV drug nelfinavir suppresses the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro. However, its efficacy in patients with COVID-19 has not been studied. We conducted a multicenter, randomized controlled trial to evaluate the efficacy and safety of orally administered nelfinavir in patients with asymptomatic or mildly symptomatic COVID-19. Compared to standard-of-care alone, nelfinavir (750 mg, thrice daily) did not reduce the time to viral clearance, viral load, or the time to resolution of symptoms. More patients had adverse events in the nelfinavir group than in the control group (74.6% [47/63 patients] versus 33.3% [20/60 patients]). Our clinical study provides evidence that nelfinavir, despite its antiviral effects on SARS-CoV-2 in vitro, should not be recommended for the treatment of patients with COVID-19 having no or mild symptoms

    LECT2 functions as a hepatokine that links obesity to skeletal muscle insulin resistance

    Get PDF
    Recent articles have reported an association between fatty liver disease and systemic insulin resistance in humans, but the causal relationship remains unclear. The liver may contribute to muscle insulin resistance by releasing secretory proteins called hepatokines. Here we demonstrate that leukocyte cell-derived chemotaxin 2 (LECT2), an energy-sensing hepatokine, is a link between obesity and skeletal muscle insulin resistance. Circulating LECT2 positively correlated with the severity of both obesity and insulin resistance in humans. LECT2 expression was negatively regulated by starvation-sensing kinase adenosine monophosphate-activated protein kinase in H4IIEC hepatocytes. Genetic deletion of LECT2 in mice increased insulin sensitivity in the skeletal muscle. Treatment with recombinant LECT2 protein impaired insulin signaling via phosphorylation of Jun NH2-terminal kinase in C2C12 myocytes. These results demonstrate the involvement of LECT2 in glucose metabolism and suggest that LECT2 may be a therapeutic target for obesity-associated insulin resistance. © 2014 by the American Diabetes Association

    Tcc1p, a Novel Protein Containing the Tetratricopeptide Repeat Motif, Interacts with Tup1p To Regulate Morphological Transition and Virulence in Candida albicans

    No full text
    The transcriptional factor CaTup1p represses many genes involved in intracellular processes, including the yeast-hypha transition, in the human fungal pathogen Candida albicans. Using tandem affinity purification technology, we identified a novel protein that interacts with CaTup1p, named Tcc1p (Tup1p complex component). Tcc1p is a C. albicans-specific protein with a 736-amino-acid polypeptide with four tetratricopeptide repeat (TPR) motifs in the N-terminal portion. Tcc1p formed a protein complex with CaTup1p via the TPR domain of Tcc1p, independently of CaSsn6p-CaTup1p The tcc1Δ disruptant showed filamentous growth under conditions inducing the yeast form, as is true of the Catup1Δ mutant. Consistent with this result, the common set of hypha-specific genes was negatively regulated by both TCC1 and CaTUP1. These observations will provide new insights into CaTup1p-dependent transcriptional gene regulation in C. albicans

    Cryptococcus gattii alters immunostimulatory potential in response to the environment.

    No full text
    Cryptococcus gattii is a capsular fungal pathogen, which causes life-threatening cryptococcosis in immunocompetent individuals. This emerging pathogen is less likely to be recognized by innate immunity compared to traditional Cryptococcus neoformans strains. Previous studies indicate that C-type lectin receptors (CLRs), including dectin-1 and dectin-2, play a role in recognizing cryptococcal cells; however, it remains to be elucidated whether the receptors physically associate with C. gattii yeast cell surfaces. Based on the previous findings, we hypothesized that culture conditions influence the expression or exposure of CLR ligands on C. gattii. Therefore, in the present study, we first investigated the culture conditions that induce exposure of CLR ligands on C. gattii yeast cells via the binding assay using recombinant fusion proteins of mouse CLR and IgG Fc, Fc dectin-1 and Fc dectin-2. Common fungal culture media, such as yeast extract-peptone-dextrose (YPD) broth, Sabouraud broth, and potato dextrose agar, did not induce the exposure of dectin-1 ligands, including β-1,3-glucan, on both capsular and acapsular C. gattii strains, in contrast to Fc dectin-1 and Fc dectin-2 bound to C. gattii cells growing in the conventional synthetic dextrose (SD) medium [may also be referred to as a yeast nitrogen base with glucose medium]. The medium also induced the exposure of dectin-1 ligands on C. neoformans, whereas all tested media induced dectin-1 and dectin-2 ligands in a control fungus Candida albicans. Notably, C. gattii did not expose dectin-1 ligands in SD medium supplemented with yeast extract or neutral buffer. In addition, compared to YPD medium-induced C. gattii, SD medium-induced C. gattii more efficiently induced the phosphorylation of Syk, Akt, and Erk1/2 in murine dendritic cells (DCs). Afterwards, the cells were considerably engulfed by DCs and remarkably induced DCs to secrete the inflammatory cytokines. Overall, the findings suggest that C. gattii alters its immunostimulatory potential in response to the environment
    corecore