123 research outputs found

    Bioconversion of paper sludge to biofuel by simultaneous saccharification and fermentation using a cellulase of paper sludge origin and thermotolerant Saccharomyces cerevisiae TJ14

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ethanol production from paper sludge (PS) by simultaneous saccharification and fermentation (SSF) is considered to be the most appropriate way to process PS, as it contains negligible lignin. In this study, SSF was conducted using a cellulase produced from PS by the hypercellulase producer, <it>Acremonium cellulolyticus </it>C-1 for PS saccharification, and a thermotolerant ethanol producer <it>Saccharomyces cerevisiae </it>TJ14 for ethanol production. Using cellulase of PS origin minimizes biofuel production costs, because the culture broth containing cellulase can be used directly.</p> <p>Results</p> <p>When 50 g PS organic material (PSOM)/l was used in SSF, the ethanol yield based on PSOM was 23% (g ethanol/g PSOM) and was two times higher than that obtained by a separate hydrolysis and fermentation process. Cellulase activity throughout SSF remained at around 60% of the initial activity. When 50 to 150 g PSOM/l was used in SSF, the ethanol yield was 21% to 23% (g ethanol/g PSOM) at the 500 ml Erlenmeyer flask scale. Ethanol production and theoretical ethanol yield based on initial hexose was 40 g/l and 66.3% (g ethanol/g hexose) at 80 h, respectively, when 161 g/l of PSOM, 15 filter paper units (FPU)/g PSOM, and 20% inoculum were used for SSF, which was confirmed in the 2 l scale experiment. This indicates that PS is a good raw material for bioethanol production.</p> <p>Conclusions</p> <p>Ethanol concentration increased with increasing PSOM concentration. The ethanol yield was stable at PSOM concentrations of up to 150 g/l, but decreased at concentrations higher than 150 g/l because of mass transfer limitations. Based on a 2 l scale experiment, when 1,000 kg PS was used, 3,182 kFPU cellulase was produced from 134.7 kg PS. Produced cellulase was used for SSF with 865.3 kg PS and ethanol production was estimated to be 51.1 kg. Increasing the yeast inoculum or cellulase concentration did not significantly improve the ethanol yield or concentration.</p

    Elimination of fukutin reveals cellular and molecular pathomechanisms in muscular dystrophy-associated heart failure

    Get PDF
    Heart failure is the major cause of death for muscular dystrophy patients, however, the molecular pathomechanism remains unknown. Here, we show the detailed molecular pathogenesis of muscular dystrophy-associated cardiomyopathy in mice lacking the fukutin gene (Fktn), the causative gene for Fukuyama muscular dystrophy. Although cardiac Fktn elimination markedly reduced alpha-dystroglycan glycosylation and dystrophin-glycoprotein complex proteins in sarcolemma at all developmental stages, cardiac dysfunction was observed only in later adulthood, suggesting that membrane fragility is not the sole etiology of cardiac dysfunction. During young adulthood, Fktn-deficient mice were vulnerable to pathological hypertrophic stress with downregulation of Akt and the MEF2-histone deacetylase axis. Acute Fktn elimination caused severe cardiac dysfunction and accelerated mortality with myocyte contractile dysfunction and disordered Golgi-microtubule networks, which were ameliorated with colchicine treatment. These data reveal fukutin is crucial for maintaining myocyte physiology to prevent heart failure, and thus, the results may lead to strategies for therapeutic intervention

    Mate-guarding behavior enhances male reproductive success via familiarization with mating partners in medaka fish

    Get PDF
    [Background] Male-male competition and female mating preference are major mechanisms of sexual selection, which influences individual fitness. How male-male competition affects female preference, however, remains poorly understood. Under laboratory conditions, medaka (Oryzias latipes) males compete to position themselves between a rival male and the female (mate-guarding) in triadic relationships (male, male, and female). In addition, females prefer to mate with visually familiar males. In the present study, to examine whether mate-guarding affects female preference via visual familiarization, we established a novel behavioral test to simultaneously quantify visual familiarization of focal males with females and mate-guarding against rival males. In addition, we investigated the effect of familiarization on male reproductive success in triadic relationships. [Results] Three fish (female, male, male) were placed separately in a transparent three-chamber tank, which allowed the male in the center (near male) to maintain closer proximity to the female than the other male (far male). Placement of the wild-type male in the center blocked visual familiarization of the far male by the female via mate-guarding. In contrast, placement of an arginine-vasotocin receptor mutant male, which exhibits mate-guarding deficits, in the center, allowing for maintaining close proximity to the female, did not block familiarization of the far male by the female. We also demonstrated that the reproductive success of males was significantly decreased by depriving females visual familiarization with the males. [Conclusions] Our findings indicated that, at least in triadic relationships, dominance in mate-guarding, not simply close proximity, allows males to gain familiarity with the female over their rivals, which may enhance female preference for the dominant male. These findings focusing on the triadic relationships of medaka may contribute to our understanding of the adaptive significance of persistent mate-guarding, as well as female preference for familiar mates

    Mate-guarding behavior enhances male reproductive success via familiarization with mating partners in medaka fish

    Get PDF
    Background: Male-male competition and female mating preference are major mechanisms of sexual selection, which influences individual fitness. How male-male competition affects female preference, however, remains poorly understood. Under laboratory conditions, medaka (Oryzias latipes) males compete to position themselves between a rival male and the female (mate-guarding) in triadic relationships (male, male, and female). In addition, females prefer to mate with visually familiar males. In the present study, to examine whether mate-guarding affects female preference via visual familiarization, we established a novel behavioral test to simultaneously quantify visual familiarization of focal males with females and mate-guarding against rival males. In addition, we investigated the effect of familiarization on male reproductive success in triadic relationships. Results: Three fish (female, male, male) were placed separately in a transparent three-chamber tank, which allowed the male in the center (near male) to maintain closer proximity to the female than the other male (far male). Placement of the wild-type male in the center blocked visual familiarization of the far male by the female via mate-guarding. In contrast, placement of an arginine-vasotocin receptor mutant male, which exhibits mate-guarding deficits, in the center, allowing for maintaining close proximity to the female, did not block familiarization of the far male by the female. We also demonstrated that the reproductive success of males was significantly decreased by depriving females visual familiarization with the males. Conclusions: Our findings indicated that, at least in triadic relationships, dominance in mate-guarding, not simply close proximity, allows males to gain familiarity with the female over their rivals, which may enhance female preference for the dominant male. These findings focusing on the triadic relationships of medaka may contribute to our understanding of the adaptive significance of persistent mate-guarding, as well as female preference for familiar mates

    Unidirectional light propagation through two-layer nanostructures based on optical near-field interactions

    Full text link
    We theoretically demonstrate direction-dependent polarization conversion efficiency, yielding unidirectional light transmission, through a two-layer nanostructure by using the angular spectrum representation of optical near-fields. The theory provides results that are consistent with electromagnetic numerical simulations. This study reveals that optical near-field interactions among nanostructured matter can provide unique optical properties, such as the unidirectionality observed here, and offers fundamental guiding principles for understanding and engineering nanostructures for realizing novel functionalities

    TRPV2 is critical for the maintenance of cardiac structure and function in mice

    Get PDF
    The heart has a dynamic compensatory mechanism for haemodynamic stress. However, the molecular details of how mechanical forces are transduced in the heart are unclear. Here we show that the transient receptor potential, vanilloid family type 2 (TRPV2) cation channel is critical for the maintenance of cardiac structure and function. Within 4 days of eliminating TRPV2 from hearts of the adult mice, cardiac function declines severely, with disorganization of the intercalated discs that support mechanical coupling with neighbouring myocytes and myocardial conduction defects. After 9 days, cell shortening and Ca2+ handling by single myocytes are impaired in TRPV2-deficient hearts. TRPV2-deficient neonatal cardiomyocytes form no intercalated discs and show no extracellular Ca2+-dependent intracellular Ca2+ increase and insulin-like growth factor (IGF-1) secretion in response to stretch stimulation. We further demonstrate that IGF-1 receptor/PI3K/Akt pathway signalling is significantly downregulated in TRPV2-deficient hearts, and that IGF-1 administration partially prevents chamber dilation and impairment in cardiac pump function in these hearts. Our results improve our understanding of the molecular processes underlying the maintenance of cardiac structure and function

    Mechanical strain attenuates cytokine-induced ADAMTS9 expression via transient receptor potential vanilloid type 1

    Get PDF
    The synovial fluids of patients with osteoarthritis (OA) contain elevated levels of inflammatory cytokines, which induce the expression of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) and of the matrix metalloproteinase (MMP) in chondrocytes. Mechanical strain has varying effects on organisms depending on the strength, cycle, and duration of the stressor; however, it is unclear under inflammatory stimulation how mechanical strain act on. Here, we show that mechanical strain attenuates inflammatory cytokine-induced expression of matrix-degrading enzymes. Cyclic tensile strain (CTS), as a mechanical stressor, attenuated interleukin (IL)-1β and tumor necrosis factor (TNF)-α-induced mRNA expression of ADAMTS4, ADAMTS9, and MMP-13 in normal chondrocytes (NHAC-kn) and in a chondrocytic cell line (OUMS-27). This effect was abolished by treating cells with mechano-gated channel inhibitors, such as gadolinium, transient receptor potential (TRP) family inhibitor, ruthenium red, and with pharmacological and small interfering RNA-mediated TRPV1 inhibition. Furthermore, nuclear factor κB (NF-κB) translocation from the cytoplasm to the nucleus resulting from cytokine stimulation was also abolished by CTS. These findings suggest that mechanosensors such as the TRPV protein are potential therapeutic targets in treating OA
    corecore