39 research outputs found
Pressure-induced quantum critical point in a heavily hydrogen-doped iron-based superconductor LaFeAsO
An iron-based superconductor LaFeAsOH (0 0.6)
undergoes two antiferromagnetic (AF) phases upon H doping. We investigated the
second AF phase (=0.6) using NMR techniques under pressure. At pressures up
to 2 GPa, the ground state is a spin-density-wave state with a large gap;
however, the gap closes at 4.0 GPa, suggesting a pressure-induced quantum
critical point. Interestingly, the gapped excitation coexists with gapless
magnetic fluctuations at pressures between 2 and 4 GPa. This coexistence is
attributable to the lift up of the orbital to the Fermi level, a
Lifshitz transition under pressure
Small sensor probe for measuring plasma waves in space Space science
Background: Since conventional one-point observations of plasma phenomena in space cannot distinguish between time and spatial variations, the missions on the basis of multiple-point observations have become the trend. We propose a new system for multiple-point observation referred to as the monitor system for space electromagnetic environments (MSEE). Findings: The MSEE consists of small sensor probes that have a capability to measure electromagnetic waves and transfer received data to the central station through wireless communication. We developed the prototype model of the MSEE sensor probe. The sensor probe includes a plasma wave receiver, the microcontroller, the wireless communication module, and the battery in the 75-mm cubic housing. In addition, loop antennas, dipole antennas, and actuators that are used for expanding dipole antennas are attached on the housing. The whole mass of the sensor probe is 692 g, and the total power consumption is 462 mW. The sensor probe can work with both inner battery and external power supply. The maximum continuous operation time on battery power is more than 6 h. We verified the total performance for electric field measurements by inputting signal to preamplifier. In this test, we found that analog components had enough characteristics to measure electric fields, and the A/D conversion and the wireless transmission worked correctly. In the whole performance for electric fields, the sensor probe has equivalent noise level of - 135 dBV/m/√Hz. Conclusions: We succeed in developing the prototype model of the small sensor probe that had enough sensitivity for electric field to measure plasma waves and the ability to transfer observation data through wireless communication. The success in developing the small sensor probe for the measurement of plasma waves leads to the realization of the multiple-point observations using a lot of small probes scattered in space
Activin E Controls Energy Homeostasis in Both Brown and White Adipose Tissues as a Hepatokine
Brown adipocyte activation or beige adipocyte emergence in white adipose tissue (WAT) increases energy expenditure, leading to a reduction in body fat mass and improved glucose metabolism. We found that activin E functions as a hepatokine that enhances thermogenesis in response to cold exposure through beige adipocyte emergence in inguinal WAT (ingWAT). Hepatic activin E overexpression activated thermogenesis through Ucp1 upregulation in ingWAT and other adipose tissues including interscapular brown adipose tissue and mesenteric WAT. Hepatic activin E-transgenic mice exhibited improved insulin sensitivity. Inhibin βE gene silencing inhibited cold-induced Ucp1 induction in ingWAT. Furthermore, in vitro experiments suggested that activin E directly stimulated expression of Ucp1 and Fgf21, which was mediated by transforming growth factor-β or activin type I receptors. We uncovered a function of activin E to stimulate energy expenditure through brown and beige adipocyte activation, suggesting a possible preventive or therapeutic target for obesity
Role of cyclooxygenase-2-mediated prostaglandin E2-prostaglandin E receptor 4 signaling in cardiac reprogramming
Direct cardiac reprogramming from fibroblasts can be a promising approach for disease modeling, drug screening, and cardiac regeneration in pediatric and adult patients. However, postnatal and adult fibroblasts are less efficient for reprogramming compared with embryonic fibroblasts, and barriers to cardiac reprogramming associated with aging remain undetermined. In this study, we screened 8400 chemical compounds and found that diclofenac sodium (diclofenac), a non-steroidal anti-inflammatory drug, greatly enhanced cardiac reprogramming in combination with Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Hand2. Intriguingly, diclofenac promoted cardiac reprogramming in mouse postnatal and adult tail-tip fibroblasts (TTFs), but not in mouse embryonic fibroblasts (MEFs). Mechanistically, diclofenac enhanced cardiac reprogramming by inhibiting cyclooxygenase-2, prostaglandin E2/prostaglandin E receptor 4, cyclic AMP/protein kinase A, and interleukin 1β signaling and by silencing inflammatory and fibroblast programs, which were activated in postnatal and adult TTFs. Thus, anti-inflammation represents a new target for cardiac reprogramming associated with aging
Development of an epileptic seizure prediction algorithm using R–R intervals with self-attentive autoencoder
Epilepsy is a neurological disorder that may affect the autonomic nervous system (ANS) from 15 to 20 min before seizure onset, and disturbances of ANS affect R–R intervals (RRI) on an electrocardiogram (ECG). This study aims to develop a machine learning algorithm for predicting focal epileptic seizures by monitoring R–R interval (RRI) data in real time. The developed algorithm adopts a self-attentive autoencoder (SA-AE), which is a neural network for time-series data. The results of applying the developed seizure prediction algorithm to clinical data demonstrated that it functioned well in most patients; however, false positives (FPs) occurred in specific participants. In a future work, we will investigate the causes of FPs and optimize the developing seizure prediction algorithm to further improve performance using newly added clinical data
The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2016 (J-SSCG 2016)
Background and purposeThe Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2016 (J-SSCG 2016), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in February 2017 and published in the Journal of JSICM, [2017; Volume 24 (supplement 2)] https://doi.org/10.3918/jsicm.24S0001 and Journal of Japanese Association for Acute Medicine [2017; Volume 28, (supplement 1)] http://onlinelibrary.wiley.com/doi/10.1002/jja2.2017.28.issue-S1/issuetoc.This abridged English edition of the J-SSCG 2016 was produced with permission from the Japanese Association of Acute Medicine and the Japanese Society for Intensive Care Medicine.MethodsMembers of the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine were selected and organized into 19 committee members and 52 working group members. The guidelines were prepared in accordance with the Medical Information Network Distribution Service (Minds) creation procedures. The Academic Guidelines Promotion Team was organized to oversee and provide academic support to the respective activities allocated to each Guideline Creation Team. To improve quality assurance and workflow transparency, a mutual peer review system was established, and discussions within each team were open to the public. Public comments were collected once after the initial formulation of a clinical question (CQ) and twice during the review of the final draft. Recommendations were determined to have been adopted after obtaining support from a two-thirds (> 66.6%) majority vote of each of the 19 committee members.ResultsA total of 87 CQs were selected among 19 clinical areas, including pediatric topics and several other important areas not covered in the first edition of the Japanese guidelines (J-SSCG 2012). The approval rate obtained through committee voting, in addition to ratings of the strengths of the recommendation, and its supporting evidence were also added to each recommendation statement. We conducted meta-analyses for 29 CQs. Thirty-seven CQs contained recommendations in the form of an expert consensus due to insufficient evidence. No recommendations were provided for five CQs.ConclusionsBased on the evidence gathered, we were able to formulate Japanese-specific clinical practice guidelines that are tailored to the Japanese context in a highly transparent manner. These guidelines can easily be used not only by specialists, but also by non-specialists, general clinicians, nurses, pharmacists, clinical engineers, and other healthcare professionals
Autophagy during left ventricular redilation after ventrictuoulasty : Insights from a rat model of ischemic cardiomyopathy
Objectives: Myocardial autophagy has been recognized as an important factor in heart failure. It is not known whether changes in ventricular geometry by left ventriculoplasty influence autophagy in ischemic cardiomyopathy. We hypothesized that myocardial autophagy plays an important role in left ventricular (LV) redilation after ventriculoplasty. Methods: Four weeks after ligation of the left anterior descending artery, ventriculoplasty or sham operation was performed. The animals were euthanized at 2 days (early) or 28 days (late) after the second operation. Ventricular autophagy was evaluated by protein expression of microtubule-associated protein light chain 3 II, an autophagosome marker. Cardiomyocyte area was assessed by histologic examination. LV function was evaluated by echocardiography. To examine the implications of autophagy, an autophagy inhibitor (3-methyladenine) was injected intraperitoneally for 3 weeks before sacrifice. Results: The LV was reduced in size early and redilated late after ventriculoplasty. LV systolic function was improved early and later worsened after ventriculoplasty. Light chain 3 II expression decreased early after ventriculoplasty and increased in the late period. Myocyte area increased from the early to late stage after ventriculoplasty. Autophagic inhibition exaggerated the increased myocyte hypertrophy and LV redilation. Conclusions: In a rat model of myocardial infarction, autophagy decreased early after ventriculoplasty and increased again during LV redilation. These results provide new insights into the mechanism underlying the late failure of ventriculoplasty