68 research outputs found

    Isolation and characterization of naïve follicular dendritic cells

    Get PDF
    Follicular dendritic cells (FDC) are specialized antigen-presenting cells to cognate B cells in the follicle of the lymphoid tissues. FDC also support survival and proliferation of the B cells, leading to the germinal center formation. FDC therefore play a central role in humoral immune responses. However, molecular and functional characteristics of FDC are largely unknown, because it is difficult to isolate and analyze FDC due to a very small number of FDC in the lymphoid tissues and the fragility by mechanical and chemical stresses in vitro. In this report, we established a novel method for FDC isolation from the spleen of naïve mice by flow cytometry and analyzed the phenotypical and functional characteristics. The isolated FDC, which accounted for ∼0.2% of the spleen cells of naïve mice, were CD45−, FDC-M2+, and ICAM-1+, and supported the survival and LPS-induced proliferation of B cells. We also showed that a neutralizing antibody against B cell activating factor TNF family (BAFF) suppressed FDC-dependent B cell proliferation in the presence of LPS, but not survival, demonstrating the evidence that FDC-derived BAFF is involved in B cell proliferation

    Preface.

    No full text
    International audienc

    A cytosine-to-uracil change within the programmed -1 ribosomal frameshift signal of SARS-CoV-2 results in structural similarities with the MERS-CoV signal

    No full text
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the ongoing COVID-19 pandemic, like many other viruses, uses programmed ribosomal frameshifting (PRF) to enable synthesis of multiple proteins from its compact genome. In independent analyses, we evaluated the PRF regions of all SARS-CoV-2 sequences available in GenBank and from the Global Initiative on Sharing All Influenza Data for variations. Of the 5,156 and 27,153 sequences analyzed, respectively, the PRF regions were identical in 95.7% and 97.2% of isolates. The most common change from the reference sequence was from C to U at position 13,536, which lies in the three-stemmed pseudoknot known to stimulate frameshifting. With the conversion of the G 13493 -C 13536 Watson-Crick pair to G-U, the SARS-CoV-2 PRF closely resembles its counterpart in the Middle East respiratory syndrome coronavirus. The occurrence of this change increased from 0.5 to 3% during the period of March to May 2020.The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the ongoing COVID-19 pandemic, like many other viruses, uses programmed ribosomal frameshifting (PRF) to enable synthesis of multiple proteins from its compact genome. In independent analyses, we evaluated the PRF regions of all SARS-CoV-2 sequences available in GenBank and from the Global Initiative on Sharing All Influenza Data for variations. Of the 5,156 and 27,153 sequences analyzed, respectively, the PRF regions were identical in 95.7% and 97.2% of isolates. The most common change from the reference sequence was from C to U at position 13,536, which lies in the three-stemmed pseudoknot known to stimulate frameshifting. With the conversion of the G 13493-C 13536 Watson-Crick pair to G-U, the SARS-CoV-2 PRF closely resembles its counterpart in the Middle East respiratory syndrome coronavirus. The occurrence of this change increased from 0.5 to 3% during the period of March to May 2020

    Use of Baby Spinach and Broccoli for imaging of structured cellular RNAs

    No full text
    International audienceFluorogenic RNA aptamers provide a powerful tool for study of RNA analogous to green fluorescent protein for the study of proteins. Spinach and Broccoli are RNAs selected in vitro or in vivo respectively to bind to an exogenous chromophore. They can be genetically inserted into an RNA of interest for live-cell imaging. Spinach aptamer has been altered to increase thermal stability and stabilize the desired folding. How well these fluorogenic RNA aptamers behave when inserted into structured cellular RNAs and how aptamer properties might be affected remains poorly characterized. Here, we report a study of the performance of distinct RNA Spinach and Broccoli aptamer sequences in isolation or inserted into the small subunit of the bacterial ribosome. We found that the ribosomal context helped maintaining the yield of the folded Baby Spinach aptamer; other versions of Spinach did not perform well in the context of ribosomes. In vivo, two aptamers clearly stood out. Baby Spinach and Broccoli aptamers yielded fluorescence levels markedly superior to all previous Spinach sequences including the super-folder tRNA scaffolded tSpinach2. Overall, the results suggest the use of Broccoli and Baby Spinach aptamers for live cell imaging of structured RNAs

    DNA-Guided Delivery of Single Molecules into Zero-Mode Waveguides

    No full text
    Zero-mode waveguides (ZMWs) are powerful analytical tools corresponding to optical nanostructures fabricated in a thin metallic film capable of confining an excitation volume to the range of attoliters. This small volume of confinement allows single-molecule fluorescence experiments to be performed at physiologically relevant concentrations of fluorescently labelled biomolecules. Exactly one molecule to be studied must be attached at the floor of the ZMW for signal detection and analysis; however, the massive parallelism of these nanoarrays suffers from a Poissonian-limited distribution of these biomolecules. To date, there is no method available that provides full single molecule occupancy of massively arrayed ZMWs. Here we report the performance of a DNA-guided method that uses steric exclusion properties of large DNA molecules to bias the Poissonian-limited delivery of single molecules. Non-Poissonian statistics were obtained with DNA molecules that contain a free-biotinylated extremity for efficient binding to the floor of the ZMW, which resulted in a decrease of accessibility for a second molecule. Both random coil and condensed DNA conformations drove non-Poissonian single-molecule delivery into ZMWs arrays. The results suggest that an optimal balance between rigidity and flexibility of the macromolecule is critical for favourable accessibility and single occupancy. The optimized method provides means for full exploitation of these massively parallelized analytical tools

    Crystallization and preliminary X-ray analysis of the mRNA-binding domain of elongation factor SelB from Escherichia coli in complex with RNA

    No full text
    The mRNA-binding domain of E. coli selenocysteine-specific elongation factor SelB (residues 478–614; SelB-WH3/4) was overproduced in E. coli and its cognate mRNA ligand, 23 nucleotides of the SECIS RNA hairpin, was prepared by in vitro transcription. The purified SelB-WH3/4–SECIS RNA complex crystallized in space group C2 and diffracted to 2.3 Å
    corecore