11 research outputs found

    Endolithic microbial habitats hosted in carbonate nodules currently forming within sediment at a high methane flux site in the sea of Japan

    Get PDF
    Concretionary carbonates in deep-sea methane seep fields are formed as a result of microbial methane degradation, called anaerobic oxidation of methane (AOM). Recently, active microorganisms, including anaerobic methanotrophic archaea, were discovered from methane seep-associated carbonate outcroppings on the seafloor. However sedimentary buried carbonate nodules are a hitherto unknown microbial habitat. In this study, we investigated the microbial community structures in two carbonate nodules collected from a high methane flux site in a gas hydrate field off the Oki islands in the Sea of Japan. The nodules were formed around sulfate-methane interfaces (SMI) corresponding to 0.7 and 2.2 m below the seafloor. Based on a geochemical analysis, light carbon isotopic values ranging from −54.91‰ to −37.32‰ were found from the nodules collected at the shallow SMI depth, which were attributed to the high contributions of AOM-induced carbonate precipitation. Signatures of methanotrophic archaeal populations within the sedimentary buried nodule were detected based on microbial community composition analyses and quantitative real-time PCR targeted 16S rRNA, and functional genes for AOM. These results suggest that the buried carbonate nodule currently develops AOM-related microbial communities, and grows depending on the continued AOM under high methane flux conditions

    Release of mineral-bound water prior to subduction tied to shallow seismogenic slip off Sumatra

    Get PDF
    Plate-boundary fault rupture during the 2004 Sumatra-Andaman subduction earthquake extended closer to the trench than expected, increasing earthquake and tsunami size. International Ocean Discovery Program Expedition 362 sampled incoming sediments offshore northern Sumatra, revealing recent release of fresh water within the deep sediments. Thermal modeling links this freshening to amorphous silica dehydration driven by rapid burial-induced temperature increases in the past 9 million years. Complete dehydration of silicates is expected before plate subduction, contrasting with prevailing models for subduction seismogenesis calling for fluid production during subduction. Shallow slip offshore Sumatra appears driven by diagenetic strengthening of deeply buried fault-forming sediments, contrasting with weakening proposed for the shallow Tohoku-Oki 2011 rupture, but our results are applicable to other thickly sedimented subduction zones including those with limited earthquake records

    Halogens dissolved in interstitial water reveal the origin of migrating fluids in sediments of the Alboran Sea (western Mediterranean)

    No full text
    International audienceFluid migration in sedimentary basins has profound effects on a range of geological processes, including the methane cycle, tectonic and sedimentary geohazards, and microbial communities in the oceans. The Alboran Sea is a tectonically active basin characterized by contourite drifts that host migrating fluids, expressed in places by pockmarks and mud volcanoes, the latter associated with seafloor methane seepage. In this study, we examine the composition and origin of near-seafloor fluids in the Alboran Sea using sediment cores (up to 20 m long) from a pockmark field (site CL06), a nearby background area (site CL04) and a fault zone (site CL55).We use halogens (Cl, Br, and I) dissolved in interstitial water to understand the origin of fluids in the Alboran Sea. Chlorine is considered a conservative ion in interstitial water geochemistry, its concentration changing with pore water salinity. Iodine has a strong biophilic character and is incorporated in organic matter deposited with sediments, which during burial decomposes in response to geothermal heat or microbial activity to produce methane. Iodine and methane concentrations are strongly correlated and highly concentrated compared to seawater, so that iodine has been used as a methane tracer. Bromide also has a weak biophilic character and behaves similarly to iodine.Interstitial water was extracted aboard ship using Rhizon samplers. Chloride concentration was determined by ion chromatography (ICS-1600, DIONEX) at the Tokyo University of Marine Science and Technology; iodine and bromine concentrations were determined by Inductively coupled plasma mass spectrometry (ICP-MS Agilent 7500) at Micro Analysis Laboratory, Tandem accelerator (MALT), University of Tokyo.The results reveal halogen profiles that differ between the pockmark and fault sites, providing evidence of different modes of fluid migration within the contourite drifts of the Alboran Sea:(1)Pockmark and background sites: surprisingly, halogen profiles are similar at these two sites. Cl concentration decreases with depth from 610 to 590 mM over the 15 m length of the cores, a trend indicating fresher water is present in deeper sediments. I and Br concentrations increase with depth (I: 0 to 70 µM, Br: 760 to 820 µM). I and Br are strongly enriched (up to 8% and 60%, respectively) by a deep fluid source, which may relate to high TOC or evaporated seawater in deeper sediment.(2)Fault zone site: in contrast to the other two sites, Cl concentration increases with depth from 600 to 610 mM over the 16 m length of the core 55, a trend indicating saline water is dominant in deeper sediments. I and Br concentrations increase with depth (I: 35 to 70 µM, Br: 800 to 830 µM). I and Br concentrations in near-seafloor sediments are usually less strongly affected by organic decomposition, with concentrations as low as seawater; however, at site 55, I and Br are strongly enriched in near-seafloor sediments. This observation suggests vertical fluid migration is active and reaches the seafloor to maintain high I and Br concentrations

    Geochemistry of marine sediment interstitial water in the Alboran Sea, western Mediterranean Sea

    No full text
    National audienceLe mouvement des fluides dans les bassins sédimentaires est associé à une série de processus géologiques, notamment le cycle du méthane, les géorisques tectoniques et sédimentaires et les communautés microbiennes du sous-sol. La mer d'Alboran, dans la partie occidentale de la Méditerranée, est connue pour être un bassin tectoniquement actif, caractérisé par d'épais sédiments contouritiques modelées par les courants du fond. La migration des fluides dans ces sédiments est indiqué par des pockmarks et des volcans de boue associés à des remontées de méthane du fond marin. La présente étude examine les fluides interstitiels dans des carottes de sédiments (jusqu'à 20 m de long) à trois sites dans la mer d'Alboran : un site de pockmarks (CL06), un site de référénce proche des pockmarks (CL04), et un site de zone de faille (CL55). L'objectif est d'utiliser les halogènes (Cl, Br et I) dissous dans l'eau interstitielle pour comprendre l'origine des fluides dans les sédiments. Le chlore est considéré comme un ion conservateur dans la géochimie de l'eau interstitielle et sa concentration varie principalement en fonction de la salinité de l'eau interstitielle. L'iode a un fort caractère biophile et est incorporé dans la matière organique déposée avec les sédiments, qui est décomposée par l'activité géothermique et microbienne au cours du processus d'enfouissement pour produire du méthane; les concentrations d'iode et de méthane sont donc fortement corrélées. Le brome a un caractère biophile faible et se comporte de la même manière que l'iode, mais comme le chlore, il est considéré comme un ion conservateur.L'eau interstitielle a été extraite à bord du navire à l'aide d'échantillonneurs Rhizon. La concentration de chlorure a été déterminée par chromatographie ionique (ICS-1600, DIONEX) à l’Université des Sciences et Technologies Marines de Tokyo. Les concentrations d'iode et de brome ont été déterminées par spectrométrie de masse à plasma inductif (ICP-MS Agilent 7500) au Laboratoire de MicroAnalyse, accélérateur en Tandem (MALT), à l'université de Tokyo.Des profils en profondeur des halogènes différent entre les sites du pockmark et de la faille, ce qui indique que la migration et l'origine des fluides varient à l'intérieur des contourites de la mer d'Alboran.(1) Sites de pockmark et de référence proche : les profils des halogènes sur ces deux sites sont similaires. Les concentrations de Cl diminuent avec la profondeur jusqu'à 15 m sous le fond marin, passant de 610 à 590 mM. La faible salinité de l'eau interstitielle à ce site est comparable à celle de l'événement Sapropel 1, comme mesurée au site 976 de l'ODP Leg 161 ailleurs dans la mer d’Alboran (Paul et al. 2001). Les concentrations d'I et de Br augmentent avec la profondeur et (I : 0-70 µM, Br : 760-820 µM) et sont jusqu'à 8 % et 60 % enrichies, respectivement, à 15 m sous le fond marin. Cela indique la présence de fluides riches en iode et en brome dans les sédiments profonds.(2) Sites de faille : contrairement aux deux autres sites, les concentrations de Cl augmentent avec la profondeur jusqu'à 16 m sous le fond marin, passant de 600 à 610 mM. Les concentrations d'I et de Br montrent également une tendance à l'augmentation avec la profondeur (I : 35-70 μM, Br : 790-830 μM). Normalement, les concentrations d'I et de Br dans les eaux interstitielles sont minimales près du fond marin, mais à ce site, des concentrations plus élevées que celles de l’eau du fond sont observées (I : 38,8 µM). Ces caractéristiques indiquent que la zone de la faille est caractérisé par de forts flux d'halogènes vers le fond marin, suggérant que des fluides riches en halogènes migrent le long de la faille.堆積盆における流体の移動は、メタン循環、地殻変動やジオハザード、海底下の微生物群集など、さまざまな地質学的プロセスに深く関わっている。地中海西方のアルボラン海は地殻変動が活発な海盆として知られ、海底からのメタンガス湧出に関連したポックマークや泥火山が観察される。本研究では、コンターライトが発達する海域において、ポックマークサイト(Site-CL06)、その近傍のバックグラウンドサイト(Site-CL04)、および断層サイト(Site-CL55)の堆積物コア(最大20m)から得られた間隙水に溶解するハロゲン(Cl、Br、I)を用い、アルボラン海の海底表層部の堆積物間隙水の起源を明らかすることを目的とした。塩素は間隙水の地球化学において保存性成分と考えられており、その濃度は主に間隙水の塩分によって変化する。ヨウ素は強い生物親和性を持ち、堆積物とともに堆積した有機物中に取り込まれている。有機物は埋没過程で地熱や微生物の活動よって分解され、メタンを生成することから、ヨウ素とメタン濃度は強い相関を持つ。臭素も弱い生物親和性を持つことから、ヨウ素と同様の挙動を示すものの、塩素と同様に保存性成分とされ、流体の起源を明らかにする指標としても用いられる。間隙水は船上にてライゾンサンプラーを使って抽出した。Cl濃度は東京海洋大学のイオンクロマトグラフィ(ICS-1600, DIONEX)で、IとBr濃度は東京大学タンデム加速器研究施設(MALT)の誘導結合プラズマ質量分析装置(ICP-MS Agilent 7500)で測定した。ポックマークと断層サイトでは異なるハロゲンの深度プロファイルが観察され、アルボラン海のコンターライト内での流体の移動・起源は異なると考えられる。(1) ポックマークとバックグラウンドサイト:この2サイトではハロゲンの深度プロファイルは類似する。Cl濃度は海底から海底下15mにかけて、610~590 mMまで深度とともに減少する。このサイトでの間隙水の低塩分化は、ODP Leg 161, Site976から得られた間隙水データとの比較から、サプロペルイベント1に相当する、淡水に富む間隙水が深部に存在することを示す(Paul et al., 2001)。IとBr濃度は深度とともに増加し(I:0~70μM、Br:760~820μM)、それぞれ、海底下15 m までに最大で8%と60%まで濃縮されている。これは、深部堆積物中にヨウ素・臭素に富んだ流体が存在することを示す。(2) 断層サイト:他の2サイトとは対照的に、Cl濃度は海底から海底下16 mにかけて600~610mMまで深度とともに増加し、IとBr濃度も深度とともに増加傾向を示す(I:35~70 μM、Br:790~830 μM)。通常、海底近傍の間隙水中のIとBr濃度は、深部から海底表層に向かって低濃度化するが、本サイトでは、海底近くにも関わらず高濃度(I:38 μM、Br:800 μM)である。これらの特徴から、断層サイトは海底表層において強いハロゲンフラックスによって特徴づけられ、ハロゲンに富んだ流体が断層を介して表層まで移動している可能性を示す

    Endolithic Microbial Habitats Hosted in Carbonate Nodules Currently Forming within Sediment at a High Methane Flux Site in the Sea of Japan

    No full text
    Concretionary carbonates in deep-sea methane seep fields are formed as a result of microbial methane degradation, called anaerobic oxidation of methane (AOM). Recently, active microorganisms, including anaerobic methanotrophic archaea, were discovered from methane seep-associated carbonate outcroppings on the seafloor. However sedimentary buried carbonate nodules are a hitherto unknown microbial habitat. In this study, we investigated the microbial community structures in two carbonate nodules collected from a high methane flux site in a gas hydrate field off the Oki islands in the Sea of Japan. The nodules were formed around sulfate-methane interfaces (SMI) corresponding to 0.7 and 2.2 m below the seafloor. Based on a geochemical analysis, light carbon isotopic values ranging from −54.91‰ to −37.32‰ were found from the nodules collected at the shallow SMI depth, which were attributed to the high contributions of AOM-induced carbonate precipitation. Signatures of methanotrophic archaeal populations within the sedimentary buried nodule were detected based on microbial community composition analyses and quantitative real-time PCR targeted 16S rRNA, and functional genes for AOM. These results suggest that the buried carbonate nodule currently develops AOM-related microbial communities, and grows depending on the continued AOM under high methane flux conditions
    corecore