7,206 research outputs found
Slow-roll Inflation with the Gauss-Bonnet and Chern-Simons Corrections
We study slow-roll inflation with the Gauss-Bonnet and Chern-Simons
corrections. We obtain general formulas for the observables: spectral indices,
tensor-to-scalar ratio and circular polarization of gravitational waves. The
Gauss-Bonnet term violates the consistency relation r = -8n_T. Particularly,
blue spectrum n_T > 0 and scale invariant spectrum |8n_T|/r << 1 of tensor
modes are possible. These cases require the Gauss-Bonnet coupling function of
\xi _{,\phi } \sim 10^8/M_{Pl}. We use examples to show new-inflation-type
potential with 10M_{Pl} symmetry breaking scale and potential with flat region
in \phi \gtrsim 10M_{Pl} lead to observationally consistent blue and scale
invariant spectra, respectively. Hence, these interesting cases can actually be
realized. The Chern-Simons term produce circularly polarized tensor modes. We
show an observation of these signals supports existence of the Chern-Simons
coupling function of \omega _{,\phi } \sim 10^8/M_{Pl}. Thus, with future
observations, we can fix or constrain the value of these coupling functions, at
the CMB scale.Comment: 21 pages, 5 figure
An Efficient Algorithm for Enumerating Chordless Cycles and Chordless Paths
A chordless cycle (induced cycle) of a graph is a cycle without any
chord, meaning that there is no edge outside the cycle connecting two vertices
of the cycle. A chordless path is defined similarly. In this paper, we consider
the problems of enumerating chordless cycles/paths of a given graph
and propose algorithms taking time for each chordless cycle/path. In
the existing studies, the problems had not been deeply studied in the
theoretical computer science area, and no output polynomial time algorithm has
been proposed. Our experiments showed that the computation time of our
algorithms is constant per chordless cycle/path for non-dense random graphs and
real-world graphs. They also show that the number of chordless cycles is much
smaller than the number of cycles. We applied the algorithm to prediction of
NMR (Nuclear Magnetic Resonance) spectra, and increased the accuracy of the
prediction
Superconductivity induced by longitudinal ferromagnetic fluctuations in UCoGe
From detailed angle-resolved NMR and Meissner measurements on a ferromagnetic
(FM) superconductor UCoGe (T_Curie ~ 2.5 K and T_SC ~ 0.6 K), we show that
superconductivity in UCoGe is tightly coupled with longitudinal FM spin
fluctuations along the c axis. We found that magnetic fields along the c axis
(H || c) strongly suppress the FM fluctuations and that the superconductivity
is observed in the limited magnetic field region where the longitudinal FM spin
fluctuations are active. These results combined with model calculations
strongly suggest that the longitudinal FM spin fluctuations tuned by H || c
induce the unique spin-triplet superconductivity in UCoGe. This is the first
clear example that FM fluctuations are intimately related with
superconductivity.Comment: 4 pages, 5 figures, to appear in PR
Discovery of TUG-770: a highly potent free fatty acid receptor 1 (FFA1/GPR40) agonist for treatment of type 2 diabetes
Free fatty acid receptor 1 (FFA1 or GPR40) enhances glucose-stimulated insulin secretion from pancreatic β-cells and currently attracts high interest as a new target for the treatment of type 2 diabetes. We here report the discovery of a highly potent FFA1 agonist with favorable physicochemical and pharmacokinetic properties. The compound efficiently normalizes glucose tolerance in diet-induced obese mice, an effect that is fully sustained after 29 days of chronic dosing
A Note on Scalar Field Theory in AdS_3/CFT_2
We consider a scalar field theory in AdS_{d+1}, and introduce a formalism on
surfaces at equal values of the radial coordinate. In particular, we define the
corresponding conjugate momentum. We compute the Noether currents for
isometries in the bulk, and perform the asymptotic limit on the corresponding
charges. We then introduce Poisson brackets at the border, and show that the
asymptotic values of the bulk scalar field and the conjugate momentum transform
as conformal fields of scaling dimensions \Delta_{-} and \Delta_{+},
respectively, where \Delta_{\pm} are the standard parameters giving the
asymptotic behavior of the scalar field in AdS. Then we consider the case d=2,
where we obtain two copies of the Virasoro algebra, with vanishing central
charge at the classical level. An AdS_3/CFT_2 prescription, giving the
commutators of the boundary CFT in terms of the Poisson brackets at the border,
arises in a natural way. We find that the boundary CFT is similar to a
generalized ghost system. We introduce two different ground states, and then
compute the normal ordering constants and quantum central charges, which depend
on the mass of the scalar field and the AdS radius. We discuss certain
implications of the results.Comment: 24 pages. v2: added minor clarification. v3: added several comments
and discussions, abstract sligthly changed. Version to be publishe
Anisotropic magnetic fluctuations in the ferromagnetic superconductor UCoGe studied by angle-resolved ^{59}Co NMR
We have carried out direction-dependent ^{59}Co NMR experiments on a single
crystal sample of the ferromagnetic superconductor UCoGe in order to study the
magnetic properties in the normal state. The Knight shift and nuclear
spin-lattice relaxation rate measurements provide microscopic evidence that
both static and dynamic susceptibilities are ferromagnetic with strong Ising
anisotropy. We discuss that superconductivity induced by these magnetic
fluctuations prefers spin-triplet pairing state.Comment: 4 pages, 4 figure
Recommended from our members
Vertebrate Lrig3-ErbB Interactions Occur In Vitro but Are Unlikely to Play a Role in Lrig3-Dependent Inner Ear Morphogenesis
Background: The Lrig genes encode a family of transmembrane proteins that have been implicated in tumorigenesis, psoriasis, neural crest development, and complex tissue morphogenesis. Whether these diverse phenotypes reflect a single underlying cellular mechanism is not known. However, Lrig proteins contain evolutionarily conserved ectodomains harboring both leucine-rich repeats and immunoglobulin domains, suggesting an ability to bind to common partners. Previous studies revealed that Lrig1 binds to and inhibits members of the ErbB family of receptor tyrosine kinases by inducing receptor internalization and degradation. In addition, other receptor tyrosine kinase binding partners have been identified for both Lrig1 and Lrig3, leaving open the question of whether defective ErbB signaling is responsible for the observed mouse phenotypes. Methodology/Principal Findings: Here, we report that Lrig3, like Lrig1, is able to interact with ErbB receptors in vitro. We examined the in vivo significance of these interactions in the inner ear, where Lrig3 controls semicircular canal formation by determining the timing and extent of Netrin1 expression in the otic vesicle epithelium. We find that ErbB2 and ErbB3 are present in the early otic epithelium, and that Lrig3 acts cell-autonomously here, as would be predicted if Lrig3 regulates ErbB2/B3 activity. However, inhibition of ErbB activation in the chick otic vesicle has no detectable effect on Netrin gene expression or canal morphogenesis. Conclusions/Significance: Our results suggest that although both Lrig1 and Lrig3 can interact with ErbB receptors in vitro, modulation of Neuregulin signaling is unlikely to contribute to Lrig3-dependent processes of inner ear morphogenesis. These results highlight the similar binding properties of Lrig1 and Lrig3 and underscore the need to determine how these two family members bind to and regulate different receptors to affect diverse aspects of cell behavior in vivo
Decoupled and inhomogeneous gas flows in S0 galaxies
A recent analysis of the "Einstein" sample of early-type galaxies has
revealed that at any fixed optical luminosity Lb S0 galaxies have lower mean
X-ray luminosity Lx per unit Lb than ellipticals. Following a previous
analytical investigation of this problem (Ciotti & Pellegrini 1996), we have
performed 2D numerical simulations of the gas flows inside S0 galaxies in order
to ascertain the effectiveness of rotation and/or galaxy flattening in reducing
the Lx/Lb ratio. The flow in models without SNIa heating is considerably
ordered, and essentially all the gas lost by the stars is cooled and
accumulated in the galaxy center. If rotation is present, the cold material
settles in a disk on the galactic equatorial plane. Models with a time
decreasing SNIa heating host gas flows that can be much more complex. After an
initial wind phase, gas flows in energetically strongly bound galaxies tend to
reverse to inflows. This occurs in the polar regions, while the disk is still
in the outflow phase. In this phase of strong decoupling, cold filaments are
created at the interface between inflowing and outflowing gas. Models with more
realistic values of the dynamical quantities are preferentially found in the
wind phase with respect to their spherical counterparts of equal Lb. The
resulting Lx of this class of models is lower than in spherical models with the
same Lb and SNIa heating. At variance with cooling flow models, rotation is
shown to have only a marginal effect in this reduction, while the flattening is
one of the driving parameters for such underluminosity, in accordance with the
analytical investigation.Comment: 32 pages LaTex file, plus 5 .ps figures and macro aasms4.sty --
Accepted on Ap
- …
