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Abstract

We consider a scalar field theory in AdSd+1, and introduce a formalism on
surfaces at equal values of the radial coordinate. In particular, we define the cor-
responding conjugate momentum. We compute the Noether currents for isome-
tries in the bulk, and perform the asymptotic limit on the corresponding charges.
We then introduce Poisson brackets at the border, and show that the asymptotic
values of the bulk scalar field and the conjugate momentum transform as con-
formal fields of scaling dimensions ∆− and ∆+, respectively, where ∆± are the
standard parameters giving the asymptotic behavior of the scalar field in AdS.
Then we consider the case d = 2, where we obtain two copies of the Virasoro
algebra, with vanishing central charge at the classical level. An AdS3/CFT2

prescription, giving the commutators of the boundary CFT in terms of the Pois-
son brackets at the border, arises in a natural way. We find that the boundary
CFT is similar to a generalized ghost system. We introduce two different ground
states, and then compute the normal ordering constants and quantum central
charges, which depend on the mass of the scalar field and the AdS radius. We
discuss certain implications of the results.



1 Introduction

An intensive study of diverse theoretical aspects of Anti-de Sitter (AdS) spaces has been
carried out since the proposal [1] of the existence of a duality between a supergravity
theory on AdS and a Conformal Field Theory (CFT) living at its boundary. In addition,
the precise AdS/CFT prescription given in [2][3], where the partition function of the
AdS theory is identified with the generating functional of the dual CFT, has allowed
to perform several explicit checks and calculations.

In this context, the scalar field theory on AdS space is an interesting toy model
which allows to analyze diverse aspects of the AdS/CFT correspondence and exhibits
some subtle properties, so that it has received considerable attention in the literature.
For instance, the early works [4][5] (see also [6]) showed that it possesses the interesting
property of having two different kinds of normalizable modes, thus giving rise to two
possible quantizations in the AdS bulk. This happens for masses of the scalar field in
the range

m2
BF < m2 < m2

BF +
1

l2
, (1)

where

m2
BF = − d

2

4l2
,

is the Breitenlohner-Freedman mass. Here d+ 1 is the dimension of the AdSd+1 space
and l is the AdS radius. The Breitenlohner-Freedman bound reads

m2 ≥ m2
BF , (2)

and solutions below it correspond to tachyons in AdS. Throughout this note, we will
consider masses of the scalar field in the range (1).1

We will propose here a new approach to the formulation of scalar field theory in
the AdS/CFT correspondence, which we hope allows to gain further insight in the way
both theories relate to each other, and will lead to find interesting new results. Even
when some calculations will be performed for AdS spaces of generic d+ 1 dimensions,
our main focus here will be on the d = 2 case.

In order to set our notation, we point out that throughout this note we will consider
the Euclidean representation of AdSd+1 in Poincaré coordinates, described by the half
space x0 > 0, xi ∈ R with metric

ds2 =
l2

x2
0

d∑
µ=0

dxµdxµ . (3)

In particular, the boundary of the AdS space is located at x0 → 0.

1We will exclude the particular case m2 = m2
BF from our analysis.
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The behavior of the scalar field close to the border is of the form2

Φ(ε, ~x) = ε∆+(α(~x) +O(ε2)) + ε∆−(β(~x) +O(ε2)) , (4)

where ε = x0 is taken to be small. Here we have

∆± =
d

2
± l

√
m2 − m2

BF . (5)

The usual procedure is to require boundary conditions that set to zero half of the
modes of the field near the boundary, thus giving rise to two possible quantizations.

From the AdS/CFT point of view, we expect to find two different CFTs at the
border. One of them, corresponding to a dual operator of conformal dimension ∆+,
was reproduced through the prescription in [2] (see also [7][8] for further analysis). The
other one, corresponding to the conformal dimension ∆−, was found to be obtained
by performing a Legendre transformation to the original generating functional in the
theory with conformal dimension ∆+ [9] (see also [10] for previous results). Related
issues involve double-trace perturbations and the role of boundary conditions for scalar
field theory in Anti-de Sitter space (see e.g. [11]-[44]).

Following the standard AdS/CFT prescription in [2][3], most of the literature deal-
ing with the scalar field theory in the AdS/CFT correspondence focuses on correlation
functions. As expected, this has proven a fruitful approach. However, in this note we
would like to consider the particular case of three dimensional AdS space and shift
the focus to the information we could get about the boundary two dimensional CFT
by considering the ‘conserved’ charges of the theory in the bulk. The motivation is
as follows. We know that isometries of the AdS3 background correspond to global
conformal transformations at the boundary. Taking this into account, our proposal
here is to identify the generators of global conformal transformations of the boundary
CFT with the asymptotic expressions of the charges in the bulk, and then perform a
proper expansion on such generators in order to compute the Virasoro generators of
the theory. This idea is somehow similar in spirit to that analyzed in [45] (see also e.g.
[46][47][26] for the inclusion of the scalar field theory into the analysis), but we will
consider it here in the context of a formulation where we make use of the fixed metric
(3) and choose x0 to play a special role, so that we foliate the space on surfaces at
equal values of it, as we will discuss shortly.

Now, once in possession of the expressions of the Virasoro generators of the bound-
ary CFT, we aim at proposing a proper prescription which allows to compute the Vira-
soro algebra including the corresponding central charge, which is in principle expected
to depend on the mass of the scalar field and the AdS radius, in a similar way as the
conformal dimensions of the boundary CFT operators do through the usual AdS/CFT
prescription in [2][3]. The computation of the Virasoro algebra in the asymptotic limit
would constitute a non trivial result which could be considered as a consistency check

2We point out that the quantization in [4][5] was performed in global coordinates. We take the
results which are relevant to our present purposes.
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on our calculations. In addition, to compute the corresponding central charge would
provide, in addition, some interesting new information on the boundary CFT and on
the way both theories in different dimensions relate to each other. Besides, it is ex-
pected that some other information on the boundary CFT could be obtained, e.g. from
the requirement for the central charge to be positive, or from the specific form the Vi-
rasoro generators would have in terms of the asymptotic expressions of quantities in
the bulk. At a more speculative level, possible applications e.g. statistical or in black
hole physics could also exist, but we will not address this issue here.

Now, the computation of the generators of the boundary CFT or the calculation
of their corresponding algebra could in principle be performed only after developing a
formalism where all the information in the bulk is mapped to the boundary. In par-
ticular, this concerns the above mentioned fact that, for masses in the range (1), there
are two possible quantizations of the bulk scalar field. We should be able to take this
information to the boundary. In order to do this, there is the important observation to
be made that not only the bulk field, but also the corresponding canonical momentum
in a formulation where the radial coordinate x0 (see (3)) plays the role of ‘time’, should
be taken into account. A formalism which makes use of this canonical momentum was
presented in [24][36]. The fact that its inclusion is required follows from results in
[41][14][23] (a discussion of other aspects of this issue is postponed to footnote 10 since
it will better be considered after the introduction of some results and notation). The
point is that the inclusion of both the field and the momentum is required in order
to have the complete information about both boundary CFTs corresponding to both
quantizations in the bulk.

Motivated by the discussion above, we will then consider the radial coordinate x0

to play a special role, and introduce a formulation on surfaces at equal values of it. In
particular, we will define the corresponding conjugate momentum. In this way, when
carefully performing the limit ε→ 0 we will locate on the surface x0 = 0, where Poisson
brackets of ‘conserved’ charges may be computed. Such charges will be obtained from
the Noether currents corresponding to isometries on the AdS bulk, and we will show
them to be finite in the limit ε→ 0, provided the action is supplemented by a proper
surface term.

In order to perform certain consistency checks and introduce aspects of the formal-
ism, in Section 2 we will first focus in the generic case of AdSd+1. On the one hand, we
will verify that the asymptotic charges actually generate the global conformal algebra
in d dimensions. From well known results in the literature we also expect, in addition,
that the asymptotic values of the bulk scalar field and the momentum, which we will
call Φ0 and Π0, should transform as conformal fields of scaling dimensions ∆− and ∆+,
respectively. Using the Poisson brackets, we will verify that the asymptotic charges
actually realize these required properties too. Even when expected, these results are
non trivial, and any of them can be considered as a consistency check on our formalism.

We point out that, before the checks above are performed, we will have to consider
the interesting and important issue of the well definiteness of the limit ε → 0 when it
is performed on the charges. We will show this to hold when the action for the scalar
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field is supplemented by precisely the same (already known in the literature) boundary
term which makes the action to be finite in such limit, thus adding to the consistency
of the formalism.

Having performed all the checks above, we will then in Section 3 focus on the case
of AdS3, where the main results of this note will be obtained. Here the boundary will
be described in terms of complex holomorphic and antiholomorphic coordinates, and
the definition of the charges will involve contour integrals. Once again, we will perform
the limit ε→ 0, and then, by Laurent expanding the asymptotic charges we will obtain
two series of coefficients Ln and L̄n (n ∈ Z). On the one hand, we will show these
coefficients to satisfy the expected but non trivial result of giving rise to two copies of
the Virasoro algebra, with vanishing central charge at the classical level. On the other
hand, we will show Φ0 and Π0 to transform as conformal fields of weights (∆−

2
, ∆−

2
) and

(∆+

2
, ∆+

2
), respectively, in agreement with the previous results in Section 2. Motivated

by this, we will also propose mode expansions for Φ0 and Π0, and reproduce again the
same results as before, this time in terms of modes. Once again, any of the results
above can also be considered as a non trivial check on the formalism.

At this point, we will put aside the role of Φ0 and Π0 as the asymptotic values of
the bulk fields, and treat them as conformal fields with the given weights, living in the
boundary CFT. We will then consider aspects of the quantization of such CFT. The
motivation to attempt this is that, as we will see, a prescription relating the Poisson
brackets at x0 = 0 to commutators on the boundary CFT will arise in a natural
way. This will be a non trivial prescription, since it will relate Poisson brackets in the
asymptotic limit of a three dimensional theory to commutators in a two dimensional
one. This will be allowed by the property of the asymptotic Poisson brackets of being
computed at equal values of the distance to the origin of the complex plane (in a manner
to be illustrated later), as well as, simultaneously, at the surface of fixed x0 = 0. This
property will give the asymptotic Poisson brackets a meaning from the point of view
of the boundary CFT, and will be inherited from the definition of the charges using
contour integrals. It is also what will allow us to go one step further in Section 3 than
in the generic AdSd+1 case of Section 2, where we will deal with a d + 1 dimensional
theory only.

These calculations will lead us to find expressions for the generators and commu-
tators of the theory which, exception made of the fact that the fields will not factorize
in the holomorphic and antiholomorphic parts, are surprisingly similar to the corre-
sponding ones in generalized ghost systems.

Then, we will introduce two different ground states, which are not SL2 invariant,
and that correspond to choosing the zero mode of which one of the fields, Φ0 or Π0,
is grouped with the lowering operators. This should correspond to the two possible
quantizations in the bulk found in [4][5]. The fact that we will find two different quan-
tizations, as expected, can be considered as a last non trivial check on our formalism.

In both cases we will find the same normal ordering constants and quantum central
charges, which are given by L0|0〉 = L̄0|0〉 = l2m2

8
|0〉 and c = c̄ = 2+3l2m2, respectively.

As expected, they depend on the mass of the bulk field and the AdS radius, in an
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analogous way as the conformal dimensions do. Thus, our formalism allows to find
interesting new information on the boundary CFT corresponding to scalar field on
AdS3, and on the way both theories in different dimensions relate to each other. We
point out that, as we will show, the normal ordering constant and central charge are
in the ranges −1

8
< l2m2

8
< 0 and −1 < c < 2, respectively. In particular, we will

show that the requirement for the central charge to be positive sets l2m2 > −2
3
. This

condition is more restrictive than the Breitenlohner-Freedman bound. It is a new and
interesting result, which seems to be detected only from the boundary point of view.
The precise meaning of this and the way in which it could be red from the bulk point
of view deserve more studies.

A surprising result that we will also find will be that, from the fact that the bound-
ary CFT will be similar to a generalized ghost system, and from the explicit dependence
of the central charge with the mass of the scalar field, we will conclude that the mass
of the bulk scalar field seems to play the role of a background charge for the boundary
CFT. We believe that further insight into this interesting issue could be obtained by
performing a bosonization program on the boundary CFT. However, we will no longer
pursue this issue here.

2 Asymptotic limit in AdSd+1

The action of a massive, minimally coupled scalar field theory in AdSd+1 is of the form

I0 =
1

2

∫
M
dd+1x

√
g
(
gµν∂µΦ ∂νΦ + m2Φ2

)
, (6)

where m is the mass of the scalar field and gµν is given by (3). Our conventions are
that Greek indices µ, ν, ... take the values from 0 to d. The equation of motion reads
(∇2 −m2)Φ = 0.

We consider the space as foliated by a family of surfaces ∂Mε defined by x0 = ε,
and with outward pointing unit normal vector

nµ = (−lε−1,0) .

In particular, the boundary ∂M of the AdS space is located at ε → 0. Actually, the
action includes terms which diverge in such limit, and in order to take care of them we
supplement I0 with a proper surface term, which will not introduce any changes in the
equation of motion. We take the action to be

I = I0 + σ IS , (7)

where σ is a coefficient and

IS =
∫
M
dd+1x

√
g ∇µ(nµΦ2) . (8)

5



In fact, the choice of σ for which there are no divergent terms in the action, for ε→ 0,
and provided we consider the range (1), is given by [14][41]3

σ =
∆−
2l

. (9)

However, we will maintain a generic value of σ for a while, because it will be interesting
to see how (9) will arise again in a different context.

We consider isometries of the AdS background, i.e. coordinate transformations
xµ → xµ + δxµ such as δgµν = 0. The variation of the action (7) is of the form

δI ∼
∫
∂Mε

ddx
√
h nµ J

µ ,

where hµν is the induced metric and Jµ is the Noether current.4 The calculations are
similar to those in [41]5 and we find

Jµ = Λµ
ν δx

ν , (10)

where

Λµν = Θµν + σ [gµν∇α(nαΦ2) − 2 nµΦ ∂νΦ] ,

Θµν = −∂µΦ ∂νΦ +
1

2
gµν(g

αβ∂αΦ ∂βΦ + m2Φ2) . (11)

We write

I =
∫
M
dd+1x

√
g L ,

3See also [23][27][29]. In [24][36] Eq.(9) has been derived using the conjugate momentum in a
formulation on surfaces at equal values of x0. Here we will focus on the well definiteness of the limit
ε → 0 when it is performed on the charges. Actually (9) works well in the asymptotic limit of both
the charges and the action, as expected, and as already suggested by the results in [41].

4The standard approach would be to consider the following definition of the conserved current Ĵµ ∼
Tµνδx

ν , where Tµν is the usual energy-momentum tensor of the scalar field obtained by performing
an infinitesimal variation on the metric, gµν → gµν + δgµν , and writing

δgI =
1
2

∫
dd+1x

√
g Tµν δg

µν .

As emphasized in [41], Jµ and Ĵµ are inequivalent. The reasons why we make use of Jµ instead
of Ĵµ are, on the one hand, that, given that we want to compute the generators of the asymptotic
symmetries corresponding to isometries in the bulk, then it seems the natural choice to make, and,
on the other hand, the arguments presented in detail in [41]. In particular, Ĵµ does not contain the
information on (9), and this happens so because it is unsensitive to the addition of the surface term
(8) to the action (see [41] for additional details).

5Actually only the Noether current for time displacements in global coordinates was computed in
[41], but at this stage the formal calculations are similar, even when we are considering a different
metric and generic isometries.
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where the Lagrangian is given by

L =
1

2

(
gµν∂µΦ ∂νΦ + m2Φ2

)
+ σ ∇µ(nµΦ2) .

As discussed above, an important point regarding our calculations is that the usual
equal time formalism will be replaced here by a formulation on surfaces at equal values
of the radial coordinate x0.6 We introduce the conjugate momentum

Π =
√
g

∂L
∂(∂nΦ)

=
√
g (∂nΦ + 2 σ Φ) , (12)

where ∂nΦ = nµ∂µΦ = −x0

l
∂0Φ is the normal derivative.7 So we can write

Λ0
i =

Π
√
g

x0

l
∂iΦ ,

Λ0
0 = 2σ

Π
√
g

Φ − Π2

2g
+

1

2
∂iΦ ∂iΦ +

1

2l
(lm2 + 2σd − 4σ2l) Φ2 , (13)

where we have adopted the convention that Latin indices i,j,... take the values from 1
to d.

So far, we have considered generic isometries of the AdS background. In order to
determine the Noether currents (10) we need to explicitly write δxµ in terms of Killing
vectors. These are given by [39]

ξ0
T = 0 , ξiT = ai ;

ξ0
R = 0 , ξiR = mi

jx
j (mji = −mij) ;

ξµD = αxµ ;

ξ0
S = 2x0xibi , ξiS = 2xixjbj − xjxjbi − x0x0bi . (14)

Here ξµT , ξµR, ξµD and ξµS act at the boundary as translations, rotations, dilations and
special conformal transformations, respectively. This suggests to consider that the
charges

Q =
∫
∂Mε

ddx
√
g J0 , (15)

act at the boundary on ε→ 0 as generators of conformal transformations.

6This will eventually allow us to consider the boundary at x0 = 0 as a particular choice among
such surfaces, and compute Poisson brackets on it.

7Eq.(12) can also be written in the following form

Π = −
√
h

(
∂0Φ − 2 l σ

x0
Φ
)

,

which, exception made of the second term in the r.h.s., is closer to the usual notation. Here hµν is
the induced metric.
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Using (10, 14, 15) we find the following charges

Pi =
∫
∂Mε

ddx
√
g Λ0

i , M j
i =

∫
∂Mε

ddx
√
g (Λ0

i x
j − Λ0j xi) ,

D =
∫
∂Mε

ddx
√
g Λ0

µ x
µ , Ki =

∫
∂Mε

ddx
√
g (2 Λ0

µ x
µ xi − Λ0i xµ x

µ) .

(16)

The next step is to compute the charges above in the limit ε→ 0. We assume that
the asymptotic behavior of the scalar field is given by the lowest order term in (4),
namely

Φ(ε, ~x) ∼ ε∆− Φ0(~x) . (17)

Then from (12) the conjugate momentum should approach the boundary as

Π(ε, ~x) ∼
(

2 σ − ∆−
l

)
ε−∆+−1 Φ0(~x) . (18)

Now, when plugging (17, 18) into (16) we see that in general the charges diverge in
the limit ε → 0. However, we notice from (18) that when σ is chosen as in (9) the
O(ε−∆+−1) term does not contribute. In such case, the asymptotic behavior of Π should
be obtained by plugging the next lowest order term of (4) into (12). Such next order
term of (4) has to be chosen among the possibilities O(ε∆−+ 2) and O(ε∆+). Since we
are considering the range (1) then the lowest order of the two is O(ε∆+), and using
(12) this gives

Π(ε, ~x) ∼ ε−∆−−1 l Π0(~x) , (19)

which replaces (18). Notice that (9) simplifies (13) to

Λ0
i =

Π
√
g

x0

l
∂iΦ ,

Λ0
0 =

∆−
l

Π
√
g

Φ − Π2

2g
+

1

2
∂iΦ ∂iΦ , (20)

and the conjugate momentum (12) now reads

Π =
√
g
(
∂nΦ +

∆−
l

Φ
)
. (21)

Plugging (17, 19, 20) into (16) and taking into account (1) we see that the charges are
finite in the limit ε → 0.8 Thus, from now on we choose σ to be given by (9) and the

8In particular, notice that only the first term in the r.h.s of the expression of Λ0
0 (see (20)) will

contribute, since the other two terms are of higher order in ε. In addition, Λ0
i has a non-vanishing

contribution.
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expressions (20, 21), together with the asymptotic behaviors (17, 19), are assumed.9

A comment is in order. Notice that the asymptotic behaviors of Π and Φ were
obtained using the first and second contributions to the r.h.s. of (4), respectively.
This suggests that, in the asymptotic limit, the scaling dimension of Π should be ∆+,
whereas Φ should have dimension ∆−. This fact will explicitly be verified shortly, and
will play an important role in what follows.10

Now, taking the limit ε→ 0 and using (1, 17, 19, 20) we find the following expres-
sions for the charges (16) evaluated on the boundary at x0 = 0

P̃i = −
∫
ddx Π0 ∂iΦ0 , M̃ j

i = −
∫
ddx Π0 (xj ∂i − xi ∂

j) Φ0 ,

D̃ = −
∫
ddx Π0 (xi ∂i + ∆−) Φ0 ,

K̃i = −
∫
ddx Π0 [2 xi (xj ∂j + ∆−) − xj xj ∂

i] Φ0 , (22)

where P̃i ≡ limε→0 Pi and similar definitions are assumed for the remaining charges.
As we have pointed out before, we are considering here a formulation where x0

plays a special role and we step on surfaces at equal values of it. In particular, we have
now positioned on the boundary at x0 = 0, where we consider the Poisson brackets

{Π0(~x),Φ0(~y)}P.B. = δd(~x− ~y) , (23)

and

{Π0(~x),Π0(~y)}P.B. = {Φ0(~x),Φ0(~y)}P.B. = 0 , (24)

which give

{P̃i , Φ0}P.B. = − ∂iΦ0 , {M̃ j
i , Φ0}P.B. = − (xj ∂i − xi ∂

j) Φ0 ,

{D̃ , Φ0}P.B. = − (xi ∂i + ∆−) Φ0 ,

{K̃i , Φ0}P.B. = − [2 xi (xj ∂j + ∆−) − xj xj ∂
i] Φ0 . (25)

9The choice (9) was found in [41][14][23] to correspond to the case where the divergent local terms
in the asymptotic expression of the action vanish, and, in addition, to make the canonical energy
computed in global coordinates to be conserved, positive and finite for ‘irregular’ modes propagating
in the bulk. Here the choice (9) arises again, now making the charges to be finite in the asymptotic
limit.

10The facts that Π approaches the boundary as in (19), and that it should transform with scaling
dimension ∆+ in the asymptotic limit, were shown already in the calculations in [41][14][23] (see also
[40] for previous related results). In particular, in the notation in [23], it was shown that, once (9)
is chosen, the field ‘ψ(1)’ given by ψ(1) = ∂nΦ + ∆−

l Φ (i.e. Π =
√
gψ(1), see (21)) approaches the

boundary as ψ(1)(ε, ~x) ∼ ε∆+ψ(1)(~x), from which (19) follows. In addition, it was shown that ψ(1)

couples, through the standard AdS/CFT prescription given in [2][3][9], with a modification explained
in [41], to a boundary conformal operator of dimension ∆−, thus indicating that ψ(1), and by extension
Π, should have scaling dimension ∆+ in the asymptotic limit. On the other hand, the interpretation
of Π as the conjugate momentum to Φ (see (12)) was given in [24][36].
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In this way, the asymptotic charges P̃i, M̃
j
i , D̃ and K̃i respectively generate trans-

lations, rotations, dilations and special conformal transformations at the boundary.
Notice, in addition, that Φ0 has scaling dimension ∆−, as expected.

Now, performing integrations by parts in (22) and using (5), we also find

{P̃i , Π0}P.B. = − ∂iΠ0 , {M̃ j
i , Π0}P.B. = − (xj ∂i − xi ∂

j) Π0 ,

{D̃ , Π0}P.B. = − (xi ∂i + ∆+) Π0 ,

{K̃i , Π0}P.B. = − [2 xi (xj ∂j + ∆+) − xj xj ∂
i] Π0 , (26)

thus showing that Π0 has scaling dimension ∆+, as anticipated. In the following section,
this result will motivate us to treat Φ0 and Π0 as independent fields with the given
dimensions.

Using (23, 24), the asymptotic charges (22) can analogously be shown to satisfy the
global conformal algebra in d dimensions, as expected. This result, as well as (25) and
(26), can be considered as non trivial checks on our formalism.

In this way, we have computed the explicit expressions of the asymptotic charges
which generate the conformal transformations at the boundary. They are written in
terms of the asymptotic values of the bulk scalar field and the conjugate momentum,
namely Φ0 and Π0, which in turn behave as conformal fields with scaling dimensions
∆− and ∆+, respectively.

3 Asymptotic limit in AdS3

We now turn our attention to the particular case of d = 2, where we expect to find
the local conformal algebra and Virasoro generators in the asymptotic limit. We also
expect to compute the corresponding central charge and find related information.

We consider the following change of variables

(x0 , x1 , x2) −→ (x0 , z , z̄) ,

where the complex variables z and z̄ are given by

z = x1 + i x2 , z̄ = x1 − i x2 . (27)

The status of z and z̄ is similar here to the usual one in standard two dimensional
CFT, in that we extend the range of x1 and x2 to the complex plane, and so (27) is
understood as just a change of independent variables. In this way, z̄ is not the complex
conjugate of z, namely z∗. On the other hand, the physical space is the ‘real’ surface
z̄ = z∗ where we recover x1, x2 ∈ R.

The non-vanishing components of the metric are

g00 =
l2

x2
0

, gzz̄ = gz̄z =
l2

2x2
0

, (28)
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and the Killing vectors (14) now read

ξ0
T = 0 , ξzT = a1 + i a2 , ξz̄T = a1 − i a2 ;

ξ0
R = 0 , ξzR = − i m1

2 z , ξz̄R = i m1
2 z̄ ;

ξ0
D = α x0 , ξzD = α z , ξz̄D = α z̄ ;

ξ0
S = x0 [b1 (z + z̄) − i b2 (z − z̄)] ,

ξzS = b1 (z2 − x2
0) − i b2 (z2 + x2

0) ,

ξz̄S = b1 (z̄2 − x2
0) + i b2 (z̄2 + x2

0) . (29)

The formulation is again on surfaces at equal values of the radial coordinate x0. We
generically define the charges at x0 = ε as

Q =
∮

0
dz
∮

0
dz̄
√
g J0 , (30)

where the integrations are counterclockwise around z = 0 and z̄ = 0. The Noether
currents and the conjugate momentum are formally given by (10, 11) and (12) (sup-
plemented by (9)), but we now make use of the metric (28) and the expression (29) for
the Killing vectors. Notice that (1, 5) now reduce to

∆± = 1 ±
√

1 + l2m2 , (31)

with

−1 < l2m2 < 0 , (32)

so that

0 < ∆− < 1 , 1 < ∆+ < 2 . (33)

In particular we have the following useful relation

∆+ + ∆− = 2 . (34)

The calculations are analogous to those performed in the previous section, and we
write here the results. If we consider the choice (9) then the asymptotic behaviors of
Φ and Π are similar to those in (17, 19), namely

Φ(ε, z, z̄) ∼ ε∆− Φ0(z, z̄) , Π(ε, z, z̄) ∼ ε−∆−−1 l Π0(z, z̄) . (35)

We find the following charges in the asymptotic limit ε → 0 (here we define P̃i ≡
limε→0 Pi and so on)

P̃1 = −i (GT + ḠT ) , P̃2 = GT − ḠT ,

M̃ = − (GDR − ḠDR) , D̃ = −i (GDR + ḠDR) ,

K̃1 = −i (GS + ḠS) , K̃2 = − (GS − ḠS) , (36)
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where (from now on we define ∂ ≡ ∂
∂z

and ∂̄ ≡ ∂
∂z̄

)

GT = −i
∮

0
dz
∮

0
dz̄ Π0 ∂Φ0 ,

GDR = −i
∮

0
dz
∮

0
dz̄ Π0

(
z ∂Φ0 +

1

2
∆− Φ0

)
,

GS = −i
∮

0
dz
∮

0
dz̄ Π0 z (z ∂Φ0 + ∆− Φ0) , (37)

and

ḠT = −i
∮

0
dz̄
∮

0
dz Π0 ∂̄Φ0 ,

ḠDR = −i
∮

0
dz̄
∮

0
dz Π0

(
z̄ ∂̄Φ0 +

1

2
∆− Φ0

)
,

ḠS = −i
∮

0
dz̄
∮

0
dz Π0 z̄ (z̄ ∂̄Φ0 + ∆− Φ0) . (38)

Here the integration is performed counterclockwise over circles around z = 0 and z̄ = 0.
We will show later that GT and ḠT generate translations at the boundary, whereas
GDR and ḠDR correspond to both dilations and rotations. In addition, GS and ḠS

generate special conformal transformations.
Now, integrating by parts and using (34) we get11

GT = − i
2

∮
0
dz
∮

0
dz̄ (∆+ ∂Φ0 Π0 − ∆− Φ0 ∂Π0) ,

GDR = − i
2

∮
0
dz z

∮
0
dz̄ (∆+ ∂Φ0 Π0 − ∆− Φ0 ∂Π0) ,

GS = − i
2

∮
0
dz z2

∮
0
dz̄ (∆+ ∂Φ0 Π0 − ∆− Φ0 ∂Π0) , (39)

and

ḠT = − i
2

∮
0
dz̄
∮

0
dz (∆+ ∂̄Φ0 Π0 − ∆− Φ0 ∂̄Π0) ,

ḠDR = − i
2

∮
0
dz̄ z̄

∮
0
dz (∆+ ∂̄Φ0 Π0 − ∆− Φ0 ∂̄Π0) ,

ḠS = − i
2

∮
0
dz̄ z̄2

∮
0
dz (∆+ ∂̄Φ0 Π0 − ∆− Φ0 ∂̄Π0) . (40)

We may write

GT =
1

2πi

∮
0
dz T (z) , GDR =

1

2πi

∮
0
dz z T (z) , GS =

1

2πi

∮
0
dz z2 T (z),

ḠT =
1

2πi

∮
0
dz̄ T̄ (z̄) , ḠDR =

1

2πi

∮
0
dz̄ z̄ T̄ (z̄) , ḠS =

1

2πi

∮
0
dz̄ z̄2 T̄ (z̄),

11In these and the following calculations we assume the product Π0(z, z̄)Φ0(z, z̄) to admit a Laurent
expansion in z and z̄ (even when Π0 and Φ0 are not separately required to satisfy this property), so
in particular we have

∮
0
dz ∂(znΠ0Φ0) =

∮
0
dz̄ ∂̄(z̄nΠ0Φ0) = 0 (n ∈ Z) (notice that since we are

considering contour integrals then z and z̄ can be treated as independent variables). The explicit series
expansions for Π0 and Φ0 which satisfy these requirements will be introduced later, after a proper
motivation.
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where

T (z) = π
∮

0
dz̄ (∆+ ∂Φ0 Π0 − ∆− Φ0 ∂Π0) ,

T̄ (z̄) = π
∮

0
dz (∆+ ∂̄Φ0 Π0 − ∆− Φ0 ∂̄Π0) .

Now we Laurent expand

T (z) =
∑
n∈Z

Ln z
−n−2 , T̄ (z̄) =

∑
n∈Z

L̄n z̄
−n−2 , (41)

where

Ln = − i
2

∮
0
dz zn+1

∮
0
dz̄ (∆+ ∂Φ0 Π0 − ∆− Φ0 ∂Π0) , (42)

and

L̄n = − i
2

∮
0
dz̄ z̄n+1

∮
0
dz (∆+ ∂̄Φ0 Π0 − ∆− Φ0 ∂̄Π0) . (43)

In particular, notice from (39, 40) that

GT = L−1 , GDR = L0 , GS = L1 ,

ḠT = L̄−1 , ḠDR = L̄0 , ḠS = L̄1 . (44)

As in the previous section, we are considering here a formulation where x0 plays
a special role and we step on surfaces at equal values of it. By performing the limit
ε → 0 we have positioned on the boundary at x0 = 0, where we consider the Poisson
brackets

{Π0(z, z̄) ,Φ0(w, w̄)}P.B. = δ(z − w)δ̄(z̄ − w̄) , (45)

and

{Π0(z, z̄) ,Π0(w, w̄)}P.B. = {Φ0(z, z̄) ,Φ0(w, w̄)}P.B. = 0 . (46)

Here the δ-function satisfies (in the particular case where the integration contours are
circles around the origin, as considered here)

f(w) =
∮

0 , |z|=|w|
dz f(z) δ(z − w) ,

−∂f(w) =
∮

0 , |z|=|w|
dz f(z) ∂zδ(z − w) ,

where f is a generic function, and the integration is over a circle satisfying |z| = |w|.
So the Poisson brackets are computed at equal values of the distance to the origin of
the complex plane, in a sense that we illustrate with the following example (see (42))

{Ln , Φ0(w, w̄)}P.B. = − i

2

∮
0 , |z|=|w|

dz zn+1
∮

0 , |z̄|=|w̄|
dz̄

× [∆+ ∂Φ0(z, z̄) δ(z − w) δ̄(z̄ − w̄) − ∆− Φ0(z, z̄) ∂zδ(z − w) δ̄(z̄ − w̄)].

(47)
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Here we are integrating over counterclockwise circles around the origin of the complex
plane and satisfying |z| = |w| and |z̄| = |w̄|. It is this property of the asymptotic
Poisson brackets, of being computed at equal values of the distance to the origin of the
complex plane, that will give them a meaning from the point of view of the boundary
two dimensional CFT.

Now using Eqs.(34, 42, 43, 45, 46) we get

i{Ln , Φ0(z, z̄)}P.B. =
∆−
2

(n+ 1) zn Φ0(z, z̄) + zn+1 ∂Φ0(z, z̄) ,

i{L̄n , Φ0(z, z̄)}P.B. =
∆−
2

(n+ 1) z̄n Φ0(z, z̄) + z̄n+1 ∂̄Φ0(z, z̄) , (48)

and

i{Ln , Π0(z, z̄)}P.B. =
∆+

2
(n+ 1) zn Π0(z, z̄) + zn+1 ∂Π0(z, z̄) ,

i{L̄n , Π0(z, z̄)}P.B. =
∆+

2
(n+ 1) z̄n Π0(z, z̄) + z̄n+1 ∂̄Π0(z, z̄) . (49)

These expressions suggest the identification of the coefficients Ln and L̄n with genera-
tors of the local conformal group on the boundary of AdS3, and of the asymptotic values
of the bulk scalar field and the conjugate momentum, namely Φ0 and Π0, respectively,
with conformal fields with the following weights

Φ0 −→ hΦ0 = h̄Φ0 =
∆−
2

,

Π0 −→ hΠ0 = h̄Π0 =
∆+

2
. (50)

In particular, these results are consistent with those in the previous section (see (25,
26)) where the global conformal group in d dimensions was found and we computed the
scaling dimensions (i.e. hΦ0 + h̄Φ0 and hΠ0 + h̄Π0 in the particular case of d = 2) of Φ0

and Π0. This can be considered as a consistency check. Notice, also, that both fields
Φ0 and Π0 have spin zero (hΦ0 − h̄Φ0 = hΠ0 − h̄Π0 = 0). In addition, from (44) and (48,
49) we see that (GT , GDR, GS) and (ḠT , ḠDR, ḠS) correspond to the global conformal
group and that, as anticipated, GT and ḠT generate translations at the boundary,
whereas GDR and ḠDR generate both dilations and rotations, and GS, as well as ḠS,
correspond to special conformal transformations.

We also find the expected results12

i{Ln , Lm}P.B. = (n−m) Ln+m , (51)

12This is more easily computed by integrating by parts (see footnote 11) e.g. in (42) and using (34)
in order to write

iLn = An +
∆−
2

(n+ 1) Bn ,
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i{L̄n , L̄m}P.B. = (n−m) L̄n+m , (52)

and

{Ln , L̄m}P.B. = 0 . (53)

In this way, after performing the asymptotic limit we have obtained two copies of
the Virasoro algebra, with vanishing central charges at the classical level. These results,
as well as (48) and (49), can be considered as consistency checks on the formalism. As a
further additional check, Eqs.(51, 52, 53) can also be obtained using mode expansions.
We write13

Φ0(z, z̄) =
1

2π

∑
n,m∈Z

z−n−
∆−

2 z̄−m−
∆−

2 Φn,m ,

Π0(z, z̄) =
1

2π

∑
n,m∈Z

z−n−
∆+

2 z̄−m−
∆+
2 Πn,m , (54)

where

Φn,m = − 1

2π

∮
0
dz zn+

∆−
2
−1
∮

0
dz̄ z̄m+

∆−
2
−1 Φ0(z, z̄) ,

Πn,m = − 1

2π

∮
0
dz zn+

∆+
2
−1
∮

0
dz̄ z̄m+

∆+
2
−1 Π0(z, z̄) . (55)

The extra powers of ∆−
2

and ∆+

2
appearing in (54) are motivated by (50).

From (34), (45, 46) and (55) we find

{Πn,m , Φr,s}P.B. = − δn+r,0 δ̄m+s,0 , (56)

where

An =
∮

0

dz zn+1

∮
0

dz̄ ∂Φ0 Π0 , Bn =
∮

0

dz zn
∮

0

dz̄ Φ0 Π0 .

Then by computing

{An , Am}P.B. = (n−m) An+m , {An , Bm}P.B. = −m Bn+m , {Bn , Bm}P.B. = 0 ,

Eq.(51) follows. In a similar way (52) and (53) can also be obtained. With illustrative purposes,
notice that the integration contours are taken as, e.g.,

{An , Am}P.B. =
∮

0

dw wm+1

∮
0

dw̄

∮
0,|z|=|w|

dz zn+1

∮
0,|z̄|=|w̄|

dz̄

× [−∂Φ0(w, w̄) Π0(z, z̄) ∂zδ(z − w) δ̄(z̄ − w̄) + ∂Φ0(z, z̄) Π0(w, w̄) ∂wδ(z − w) δ̄(z̄ − w̄)].

13Using (34) we see that these mode expansions meet the requirements in footnote 11. There is the
formal aspect of the well definiteness of the product of two Laurent expansions, but, since this will
not affect the physics, then we will not consider it here.
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and

{Πn,m , Πr,s}P.B. = {Φn,m , Φr,s}P.B. = 0 . (57)

On the other hand, plugging (54) into (42, 43) and using (34) we get

Ln = i
∑
r,s∈Z

(
n

∆−
2
− r

)
Φr,s Πn−r,−s ,

L̄n = i
∑
r,s∈Z

(
n

∆−
2
− s

)
Φr,s Π−r,n−s . (58)

Now, using (56, 57, 58) and performing some straightforward algebra we reproduce
Eqs.(51, 52, 53) again, as expected.

We also find the following results

i{Ln , Φr,s}P.B. =
[
n
(

∆−
2
− 1

)
− r

]
Φn+r,s ,

i{L̄n , Φr,s}P.B. =
[
n
(

∆−
2
− 1

)
− s

]
Φr,n+s , (59)

and

i{Ln , Πr,s}P.B. =
[
n
(

∆+

2
− 1

)
− r

]
Πn+r,s ,

i{L̄n , Πr,s}P.B. =
[
n
(

∆+

2
− 1

)
− s

]
Πr,n+s , (60)

which are consistent with (48, 49).
On the basis of the results above, we interpret the coefficients Ln, L̄n in (58) to act

as the Virasoro generators of the boundary CFT. Notice that Hermitian conjugation

Φ†n,m = Φ−n,−m , Π†n,m = Π−n,−m , (61)

gives in (58) the expected properties

L†n = L−n , L̄†n = L̄−n . (62)

These results motivate us to consider aspects of the quantization of the boundary
CFT and attempt to compute the quantum central charge. From now on, Φ0 and Π0

will be treated as conformal fields of the boundary CFT having weights as given by
(50), their role as the asymptotic values of fields living in the bulk being put aside.
Notice that Eqs.(48, 49) and (59, 60) suggest to consider the following AdS3/CFT2

prescription

{ , }P.B. −→ −i [ , ] , (63)
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where [ , ] are commutators on the boundary CFT, consistent with the radial quan-
tization procedure.14 In particular, this gives in (56, 57)

[Πn,m , Φr,s] = − i δn+r,0 δ̄m+s,0 , (64)

and

[Πn,m , Πr,s] = [Φn,m , Φr,s] = 0 . (65)

We point out that the reason why (63) makes sense is the fact that the asymptotic
Poisson brackets are computed at equal values of the distance to the origin of the
complex plane, as discussed above and illustrated e.g. by (47). It is this property,
which is inherited from the definition of the charges using contour integrals (see (30)),
that causes the asymptotic Poisson brackets to have a meaning from the point of view
of the two dimensional boundary CFT, and is what allows us to go here one step further
than in the generic AdSd+1 case analyzed in the previous section.

From now on, we will simultaneously consider the following two alternative sets of
definitions

bn,m ≡ iΦn,m , cn,m ≡ Πn,m ,

λ ≡ ∆−
2

, (66)

or else

bn,m ≡ −iΠn,m , cn,m ≡ Φn,m ,

λ ≡ ∆+

2
. (67)

Choosing any of the definitions (66) or (67), and using (34), we see that Eqs.(58, 61,
64) can be written in the following way

Ln =
∑
r,s∈Z

(n λ − r) br,s cn−r,−s ,

L̄n =
∑
r,s∈Z

(n λ − s) br,s c−r,n−s , (68)

b†n,m = −b−n,−m , c†n,m = c−n,−m , (69)

[cn,m , br,s] = δn+r,0 δ̄m+s,0 . (70)

14The expression ‘radial quantization’ is not to be confused with the radial coordinate of AdS3, since
it refers to the standard quantization procedure in two dimensional CFTs, where operators within
correlation functions are radially ordered.
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Exception made of the fact that the fields are neither purely holomorphic nor antiholo-
morphic, this is strikingly similar to a generalized ghost system.15

We would like to compute the quantum central charge in the two copies of the
Virasoro algebra

[Ln , Lm] = (n−m) Ln+m +
c

12
n (n2 − 1) δn+m,0 , (71)

and

[L̄n , L̄m] = (n−m) L̄n+m +
c̄

12
n (n2 − 1) δ̄n+m,0 . (72)

We define the following ground state

b0,0|0〉 = 0 , bn,m|0〉 = cn,m|0〉 = 0 (n > 0 or m > 0) , (73)

which is not SL2 invariant. Here we have grouped b0,0 with the lowering operators and
c0,0 with the raising ones. Notice that, in fact, this gives two possible ground states,
corresponding to the choices (66, 67). This should correspond to the two possible quan-
tizations in the bulk found in [4][5]. The fact that we find two possible quantizations,
as expected, could be considered as an additional consistency check on our formalism.

We introduce a normal ordering in (68) where lowering operators are placed to the
right. We find

Ln|0〉 = L̄n|0〉 = 0 (n > 0) . (74)

The result

L1L−1|0〉 = L̄1L̄−1|0〉 = −λ(1− λ)|0〉 ,

gives the following normal ordering constant for the coefficients L0 and L̄0

L0|0〉 = L̄0|0〉 = −1

2
λ (1− λ)|0〉 . (75)

Using any of the choices (66) or (67), together with (31), we obtain

L0|0〉 = L̄0|0〉 =
l2m2

8
|0〉 . (76)

Notice from (32) that this constant is in the range

−1

8
<

l2m2

8
< 0 . (77)

Now computing

L2L−2|0〉 = L̄2L̄−2|0〉 = [(2λ− 1)2 − 4λ(1− λ)]|0〉 ,
15The existence of the analogous of a ghost current will not be discussed here.
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we get the central charges

c = c̄ = 3(2λ− 1)2 − 1 . (78)

Using any of the choices (66) or (67), together with (31), we find

c = c̄ = 2 + 3l2m2 . (79)

We also notice from (32) that the central charges are in the range

−1 < c < 2 , −1 < c̄ < 2 . (80)

As seen in (76, 79) both the normal ordering constant and quantum central charge
depend on the mass of the bulk field and on the AdS radius, in an analogous way as
the conformal dimensions do.

A striking result, which is obtained from the facts that the boundary CFT is similar
to a generalized ghost system (see (68, 69, 70)), and from the explicit dependence of
the central charge with the mass (see (79)) is that the mass of the bulk scalar field
seems to play the role of a background charge for the boundary CFT. In order to shed
some light into this susprising result, it would be interesting to perform a bosonization
program on the boundary CFT. However, this issue will no longer be considered here.

Notice also from (79) that the requirement for the central charge to be positive
gives

l2m2 > −2

3
. (81)

This is more restrictive than the Breitenlohner-Freedman bound (see (2)). This new
interesting result seems to be detected only from the boundary point of view, and the
way it could be red from the bulk point of view remains to be investigated.

We also point out again that we have found two possible choices for the ground
state, corresponding to (66, 67), together with (73), which should in turn correspond
to the two possible quantizations in the bulk found in [4][5], and that this result could
be considered as a last consistency check on the formalism that we have developed
here.

It would be interesting to investigate the generalization of the present formalism
to the case of interacting scalar field in the bulk. For instance, we could consider a
polynomial interaction

I =
∫
d3x
√
g

1

2

(
gµν∂µΦ ∂νΦ + m2Φ2

)
+
∑
n≥3

αn
n!

Φn

 .

Notice that, exception made of the asymptotic behavior (4), we have not made use
of the explicit form of the solution to the equation of motion in this formalism. This
property is expected to simplify the calculations. On the other hand, we could consider
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a perturbative approach where the solution to the free scalar field case is inserted
into modified ‘conserved’ charges, thus possibly giving rise to modified theories at the
boundary.

Another interesting issue is the inclusion of gravity in the present formalism. We
would like to analyze the case of asymptotically anti-de Sitter spaces. At a more
speculative level, there is the interesting possibility that the results we have computed
here correspond to a certain limit of a gravity theory. This is suggested by the facts that
we have found a full Virasoro symmetry algebra in the asymptotic limit of AdS3, and
further, that the corresponding energy-momentum tensor (see e.g.(41)) is in principle
expected to correspond to a massless spin 2 field in the bulk. It is possible that such
investigations could allow us to establish a connection among the formalism developed
here and the results in [45], and, in addition, to investigate possible applications in
black hole physics.

Finally, it also would be interesting to consider possible extensions of our formalism
to higher dimensional Anti-de Sitter spaces, and to values of l2m2 outside the range
(1).

Acknowledgments: It is a pleasure to thank W. Baron, C. Cardona, G.
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