20 research outputs found

    Characterization of spliced leader trans-splicing in a photosynthetic rhizarian amoeba, Paulinella micropora, and its possible role in functional gene transfer

    Get PDF
    Paulinella micropora is a rhizarian thecate amoeba, belonging to a photosynthetic Paulinella species group that has a unique organelle termed chromatophore, whose cyanobacterial origin is distinct from that of plant and algal chloroplasts. Because acquisition of the chromatophore was quite a recent event compared with that of the chloroplast ancestor, the Paulinella species are thought to be model organisms for studying the early process of primary endosymbiosis. To obtain insight into how endosymbiotically transferred genes acquire expression competence in the host nucleus, here we analyzed the 5′ end sequences of the mRNAs of P. micropora MYN1 strain with the aid of a cap-trapper cDNA library. As a result, we found that mRNAs of 27 genes, including endosymbiotically transferred genes, possessed the common 5′ end sequence of 28–33 bases that were posttranscriptionally added by spliced leader (SL) trans-splicing. We also found two subtypes of SL RNA genes encoded by the P. micropora MYN1 genome. Differing from the other SL trans-splicing organisms that usually possess poly(A)-less SL RNAs, this amoeba has polyadenylated SL RNAs. In this study, we characterize the SL trans-splicing of this unique organism and discuss the putative merits of SL trans-splicing in functional gene transfer and genome evolution

    Comparative analyses of whole-genome protein sequences from multiple organisms

    Get PDF
    Phylogenies based on entire genomes are a powerful tool for reconstructing the Tree of Life. Several methods have been proposed, most of which employ an alignment-free strategy. Average sequence similarity methods are different than most other whole-genome methods, because they are based on local alignments. However, previous average similarity methods fail to reconstruct a correct phylogeny when compared against other whole-genome trees. In this study, we developed a novel average sequence similarity method. Our method correctly reconstructs the phylogenetic tree of in silico evolved E. coli proteomes. We applied the method to reconstruct a whole-proteome phylogeny of 1,087 species from all three domains of life, Bacteria, Archaea, and Eucarya. Our tree was automatically reconstructed without any human decisions, such as the selection of organisms. The tree exhibits a concentric circle-like structure, indicating that all the organisms have similar total branch lengths from their common ancestor. Branching patterns of the members of each phylum of Bacteria and Archaea are largely consistent with previous reports. The topologies are largely consistent with those reconstructed by other methods. These results strongly suggest that this approach has sufficient taxonomic resolution and reliability to infer phylogeny, from phylum to strain, of a wide range of organisms

    Identification of a Vinyl Reductase Gene for Chlorophyll Synthesis in Arabidopsis thaliana and Implications for the Evolution of Prochlorococcus Species

    No full text
    Chlorophyll metabolism has been extensively studied with various organisms, and almost all of the chlorophyll biosynthetic genes have been identified in higher plants. However, only the gene for 3,8-divinyl protochlorophyllide a 8-vinyl reductase (DVR), which is indispensable for monovinyl chlorophyll synthesis, has not been identified yet. In this study, we isolated an Arabidopsis thaliana mutant that accumulated divinyl chlorophyll instead of monovinyl chlorophyll by ethyl methanesulfonate mutagenesis. Map-based cloning of this mutant resulted in the identification of a gene (AT5G18660) that shows sequence similarity with isoflavone reductase genes. The mutant phenotype was complemented by the transformation with the wild-type gene. A recombinant protein encoded by AT5G18660 was expressed in Escherichia coli and found to catalyze the conversion of divinyl chlorophyllide to monovinyl chlorophyllide, thereby demonstrating that the gene encodes a functional DVR. DVR is encoded by a single copy gene in the A. thaliana genome. With the identification of DVR, finally all genes required for chlorophyll biosynthesis have been identified in higher plants. Analysis of the complete genome of A. thaliana showed that it has 15 enzymes encoded by 27 genes for chlorophyll biosynthesis from glutamyl-tRNA(glu) to chlorophyll b. Furthermore, identification of the DVR gene helped understanding the evolution of Prochlorococcus marinus, a marine cyanobacterium that is dominant in the open ocean and is uncommon in using divinyl chlorophylls. A DVR homolog was not found in the genome of P. marinus but found in the Synechococcus sp WH8102 genome, which is consistent with the distribution of divinyl chlorophyll in marine cyanobacteria of the genera Prochlorococcus and Synechococcus

    Construction of a Phylogenetic Tree of Photosynthetic Prokaryotes Based on Average Similarities of Whole Genome Sequences

    Get PDF
    <div><p>Phylogenetic trees have been constructed for a wide range of organisms using gene sequence information, especially through the identification of orthologous genes that have been vertically inherited. The number of available complete genome sequences is rapidly increasing, and many tools for construction of genome trees based on whole genome sequences have been proposed. However, development of a reasonable method of using complete genome sequences for construction of phylogenetic trees has not been established. We have developed a method for construction of phylogenetic trees based on the average sequence similarities of whole genome sequences. We used this method to examine the phylogeny of 115 photosynthetic prokaryotes, i.e., cyanobacteria, Chlorobi, proteobacteria, Chloroflexi, Firmicutes and nonphotosynthetic organisms including Archaea. Although the bootstrap values for the branching order of phyla were low, probably due to lateral gene transfer and saturated mutation, the obtained tree was largely consistent with the previously reported phylogenetic trees, indicating that this method is a robust alternative to traditional phylogenetic methods.</p></div

    Phylogenetic tree constructed using a reduced gene number for the <i>Synechococcus</i> sp. CC9311 genome.

    No full text
    <p>Ten independent databases of <i>Synechococcus</i> sp. CC9311 were artificially formed with 289 randomly selected genes (10% of the total gene number). Ten independent phylogenetic trees using five <i>Prochlorococcus</i> species and four <i>Synechococcus</i> species containing artificially formed <i>Synechococcus</i> sp. CC9311 databases were constructed using each of the distance indices used to generate <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0070290#pone-0070290-g002" target="_blank">Figs. 2B to 2F</a>. A consensus tree for the ten independent trees was generated with the use of the CONSENSE program for each of the five distance indices, F<sub>Av</sub>, F<sub>XY</sub>, F<sub>YX</sub>, F<sub>H</sub>, and F<sub>L</sub>. Numbers on the branch points represent the number of identical branching patterns in ten independent trees. Branching points without numbers indicate that the number of identical branching patterns is ten. <i>S. elongatus</i> PCC 6301 was used as an out-group.</p

    Phylogenetic trees of <i>Prochlorococcus</i> and <i>Synechococcus</i> species.

    No full text
    <p>Phylogenetic tree of 16S rDNA sequences (A). The lengths of the nodes represent the substitution rate, which is defined as the percentage of substitution sites per alignment length. Bootstrap values ≥50 are shown on the branch points. (B) to (F). Phylogenetic trees were constructed using F<sub>Av</sub> (B), F<sub>XY</sub> (C), F<sub>YX</sub> (D), F<sub>H</sub> (E) and F<sub>L</sub> (F) values. The lengths of the nodes in the trees (B) to (F) represent the F<sub>Av</sub>, F<sub>XY</sub>, F<sub>YX</sub>, F<sub>H</sub>, and F<sub>L</sub>, respectively. Phylogenetic trees were drawn as NJ trees using the NEIGHBOR program in the PHYLIP package 3.67. Out-group of phylogenetic trees is the same as in (A).</p

    Relationship between the bootstrap values and the numbers of best-matched pairs.

    No full text
    <p>The bootstrap values of the nodes were determined using 100 reproduced trees with various amounts of best-matched pairs. Alphabetical characters of the branch points were represented in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0070290#pone.0070290.s002" target="_blank">Fig. S2</a>. Blue diamond, 100 E-values; red square, 200 E-values; yellow-green triangle, 500 E-values; purple square, 1,000 E-values; light-blue square, 3,000 E-values.</p

    Evolution of Green Plants Accompanied Changes in Light-Harvesting Systems

    Get PDF
    Photosynthetic organisms have various pigments enabling them to adapt to various light environments. Green plants are divided into two groups: streptophytes and chlorophytes. Streptophytes include some freshwater green algae and land plants, while chlorophytes comprise the other freshwater green algae and seawater green algae. The environmental conditions driving the divergence of green plants into these two groups and the changes in photosynthetic properties accompanying their evolution remain unknown. Here, we separated the core antennae of PSI and the peripheral antennae [light-harvesting complexes (LHCs)] in green plants by green-native gel electrophoresis and determined their pigment compositions. Freshwater green algae and land plants have high Chl a/b ratios, with most Chl b existing in LHCs. In contrast, seawater green algae have low Chl a/b ratios. In addition, Chl b exists not only in LHCs but also in PSI core antennae in these organisms, a situation beneficial for survival in deep seawater, where blue-green light is the dominant light source. Finally, low-energy Chl (red Chl) of PSI was detected in freshwater green algae and land plants, but not in seawater green algae. We thus conclude that the different level of Chl b accumulation in core antennae and differences in PSI red Chl between freshwater and seawater green algae are evolutionary adaptations of these algae to their habitats, especially to high-or low-light environments

    Characterization of spliced leader trans-splicing in a photosynthetic rhizarian amoeba, Paulinella micropora, and its possible role in functional gene transfer.

    No full text
    Paulinella micropora is a rhizarian thecate amoeba, belonging to a photosynthetic Paulinella species group that has a unique organelle termed chromatophore, whose cyanobacterial origin is distinct from that of plant and algal chloroplasts. Because acquisition of the chromatophore was quite a recent event compared with that of the chloroplast ancestor, the Paulinella species are thought to be model organisms for studying the early process of primary endosymbiosis. To obtain insight into how endosymbiotically transferred genes acquire expression competence in the host nucleus, here we analyzed the 5' end sequences of the mRNAs of P. micropora MYN1 strain with the aid of a cap-trapper cDNA library. As a result, we found that mRNAs of 27 genes, including endosymbiotically transferred genes, possessed the common 5' end sequence of 28-33 bases that were posttranscriptionally added by spliced leader (SL) trans-splicing. We also found two subtypes of SL RNA genes encoded by the P. micropora MYN1 genome. Differing from the other SL trans-splicing organisms that usually possess poly(A)-less SL RNAs, this amoeba has polyadenylated SL RNAs. In this study, we characterize the SL trans-splicing of this unique organism and discuss the putative merits of SL trans-splicing in functional gene transfer and genome evolution
    corecore