44 research outputs found
Specific status of Echinococcus canadensis (Cestoda Taeniidae) inferred from nuclear and mitochondrial gene sequences
The specific status of Echinococcus canadensis has long been controversial, mainly because it consists of the mitochondrial lineages G6, G7, G8 and G10 with different host affinity: G6 (camel strain) and G7 (pig strain) with domestic cycles and G8 (cervid strain) and G10 (Fennoscandian cervid strain) with sylvatic or semi-domestic cycles. There is an argument whether the mitochondria] lineages should be recognised as separate species which correspond to the biological or epidemiological aggregation. In the present study, the specific status of E. canadensis was investigated using mitochondrial DNA and single copy nuclear DNA markers. Nucleotide sequences of complete mitochondrial cytochrome c oxidase subunit 1 (cox1) and partial nuclear phosphoenolpyruvate carboxykinase (pepck) and DNA polymerase delta (pold) were determined for 48 isolates of E. canadensis collected from different hosts in a wide range of regions. The mitochondrial phylogeny of cox1 showed that all the isolates were clearly divided into three clades corresponding to G6/G7, G8 and G10. Five and three alleles were confirmed at pepck and pold loci, respectively. These alleles were generally divided into two groups corresponding to G6/G7 or G8 and G10. However, allele sharing was confirmed among individuals belonging to different lineages. The allele sharing occurred primarily in regions where different mitochondrial DNA lineages were found in sympatry. The resultant nuclear mitochondrial discordance suggests the genetic exchangeability among E. canadensis isolates belonging to different lineages. An apparently mosaic parasite fauna that reflects faunal mixing due to natural and anthropogenic disturbance, including introductions and invasion, precludes us from designating each of G6/G7, G8 and G10 into a different species. (C) 2017 Australian Society for Parasitology.Peer reviewe
Unbalanced relationships: insights into the interaction between gut microbiota, geohelminths, and schistosomiasis
Hosts and their microbiota and parasites have co-evolved in an adaptative relationship since ancient times. The interaction between parasites and intestinal bacteria in terms of the hosts’ health is currently a subject of great research interest. Therapeutic interventions can include manipulations of the structure of the intestinal microbiota, which have immunological interactions important for modulating the host’s immune system and for reducing inflammation. Most helminths are intestinal parasites; the intestinal environment provides complex interactions with other microorganisms in which internal and external factors can influence the composition of the intestinal microbiota. Moreover, helminths and intestinal microorganisms can modulate the host’s immune system either beneficially or harmfully. The immune response can be reduced due to co-infection, and bacteria from the intestinal microbiota can translocate to other organs. In this way, the treatment can be compromised, which, together with drug resistance by the parasites makes healing even more difficult. Thus, this work aimed to understand interactions between the microbiota and parasitic diseases caused by the most important geohelminths and schistosomiasis and the consequences of these associations
Zoonotic Diseases and One Health
Humans are part of an ecosystem, and understanding our relationship with the environment and with other organisms is a prerequisite to living together sustainably. Zoonotic diseases, which are spread between animals and humans, are an important issue as they reflect our relationship with other animals in a common environment. Zoonoses are still presented with high occurrence rates, especially in rural communities, with direct and indirect consequences for people. In several cases, zoonosis could cause severe clinical manifestations and is difficult to control and treat. Moreover, the persistent use of drugs for infection control enhances the potential of drug resistance and impacts on ecosystem balance and food production. This book demonstrates the importance of understanding zoonosis in terms of how it allows ecosystems to transform, adapt, and evolve. Ecohealth/One Health approaches recognize the interconnections among people, other organisms, and their shared developing environment. Moreover, these holistic approaches encourage stakeholders of various disciplines to collaborate in order to solve problems related to zoonosis. The reality of climate change necessitates considering new variables in studying diseases, particularly to predict how these changes in the ecosystems can affect human health and how to recognize the boundaries between medicine, veterinary care, and environmental and social changes towards healthy and sustainable development