432 research outputs found

    Ultrasonic Neuromodulation Causes Widespread Cortical Activation via an Indirect Auditory Mechanism

    Get PDF
    Ultrasound has received widespread attention as an emerging technology for targeted, non-invasive neuromodulation based on its ability to evoke electrophysiological and motor responses in animals. However, little is known about the spatiotemporal pattern of ultrasound-induced brain activity that could drive these responses. Here, we address this question by combining focused ultrasound with wide-field optical imaging of calcium signals in transgenic mice. Surprisingly, we find cortical activity patterns consistent with indirect activation of auditory pathways rather than direct neuromodulation at the ultrasound focus. Ultrasound-induced activity is similar to that evoked by audible sound. Furthermore, both ultrasound and audible sound elicit motor responses consistent with a startle reflex, with both responses reduced by chemical deafening. These findings reveal an indirect auditory mechanism for ultrasound-induced cortical activity and movement requiring careful consideration in future development of ultrasonic neuromodulation as a tool in neuroscience research

    Surface Roughness Control Based on Digital Copy Milling Concept to Achieve Autonomous Milling Operation

    Get PDF
    AbstractIn order to develop an autonomous and intelligent machine tool, a system named Digital Copy Milling (DCM) was developed in our previous studies. The DCM generates tool paths in real time based on the principle of copy milling. In the DCM, the cutting tool is controlled dynamically to follow the surface of CAD model corresponding to the machined shape without any NC program. In this study, surface roughness control of finished surface is performed as an enhanced function of DCM. From rough-cut to semi-finish-cut and finish-cut operations, the DCM selects cutting conditions and generates tool paths dynamically to satisfy instructed surface roughness Ra. The experimental verification was performed successfully

    Ultra-Shallow DoF Imaging Using Faced Paraboloidal Mirrors

    Get PDF
    Computer Vision - ACCV 2016: 13th Asian Conference on Computer Vision, Nov 20-24, 2016, Taipei, TaiwanWe propose a new imaging method that achieves an ultra-shallow depth of field (DoF) to clearly visualize a particular depth in a 3-D scene. The key optical device consists of a pair of faced paraboloidal mirrors with holes around their vertexes. In the device, a lens-less image sensor is set at one side of their holes and an object is set at the opposite side. The characteristic of the device is that the shape of the point spread function varies depending on both the positions of the target 3-D point and the image sensor. By leveraging this characteristic, we reconstruct a clear image for a particular depth by solving a linear system involving position-dependent point spread functions. In experiments, we demonstrate the effectiveness of the proposed method using both simulation and an actually developed prototype imaging system

    Optophysiological analysis of associational circuits in the olfactory cortex

    Get PDF
    Primary olfactory cortical areas receive direct input from the olfactory bulb, but also have extensive associational connections that have been mainly studied with classical anatomical methods. Here, we shed light on the functional properties of associational connections in the anterior and posterior piriform cortices (aPC and pPC) using optophysiological methods. We found that the aPC receives dense functional connections from the anterior olfactory nucleus (AON), a major hub in olfactory cortical circuits. The local recurrent connectivity within the aPC, long invoked in cortical autoassociative models, is sparse and weak. By contrast, the pPC receives negligible input from the AON, but has dense connections from the aPC as well as more local recurrent connections than the aPC. Finally, there are negligible functional connections from the pPC to aPC. Our study provides a circuit basis for a more sensory role for the aPC in odor processing and an associative role for the pPC

    Novel view synthesis with light-weight view-dependent texture mapping for a stereoscopic HMD

    Get PDF
    ICME 2017: 18th IEEE International Conference on Multimedia and Expo, July 10-14, 2017, Hong Kong, ChinaThe proliferation of off-the-shelf head-mounted displays (HMDs) let end-users enjoy virtual reality applications, some of which render a real-world scene using a novel view synthesis (NVS) technique. View-dependent texture mapping (VDTM) has been studied for NVS due to its photo-realistic quality. The VDTM technique renders a novel view by adaptively selecting textures from the most appropriate images. However, this process is computationally expensive because VDTM scans every captured image. For stereoscopic HMDs, the situation is much worse because we need to render novel views once for each eye, almost doubling the cost. This paper proposes light-weight VDTM tailored for an HMD. In order to reduce the computational cost in VDTM, our method leverages the overlapping fields of view between a stereoscopic pair of HMD images and pruning the images to be scanned. We show that the proposed method drastically accelerates the VDTM process without spoiling the image quality through a user study

    Ultrasonic Neuromodulation Causes Widespread Cortical Activation via an Indirect Auditory Mechanism

    Get PDF
    Ultrasound has received widespread attention as an emerging technology for targeted, non-invasive neuromodulation based on its ability to evoke electrophysiological and motor responses in animals. However, little is known about the spatiotemporal pattern of ultrasound-induced brain activity that could drive these responses. Here, we address this question by combining focused ultrasound with wide-field optical imaging of calcium signals in transgenic mice. Surprisingly, we find cortical activity patterns consistent with indirect activation of auditory pathways rather than direct neuromodulation at the ultrasound focus. Ultrasound-induced activity is similar to that evoked by audible sound. Furthermore, both ultrasound and audible sound elicit motor responses consistent with a startle reflex, with both responses reduced by chemical deafening. These findings reveal an indirect auditory mechanism for ultrasound-induced cortical activity and movement requiring careful consideration in future development of ultrasonic neuromodulation as a tool in neuroscience research

    Three-dimensional imaging of a long-period stacking ordered phase in Mg₉₇Zn₁Gd₂ using high-voltage electron microscopy

    Full text link
    Spatial configurations and lateral morphology of the 14H long-period stacking ordered (LPSO) phase have been studied by single tilt-axis electron tomography using high-voltage scanning transmission electron microscopy (STEM) operated at 1 MV. A "Quonset hut-like" lateral shape of the LPSO was found in a tomogram of a specimen as thick as 1.7 μ m. The reconstructed volume reveals spatial distribution of residual particulate precipitates of (Mg, Zn)3Gd phase 20-30 nm in diameters. The precipitates act as a source of solute elements for the formation and growth processes of 14H LPSO. 1 MV-STEM realizes enough resolution for imaging the morphology of LPSO as well as high electron transmittance (∼4.1 μ m) without any obvious electron irradiation damages on microstructures

    Transcranial Focused Ultrasound to the Right Prefrontal Cortex Improves Mood and Alters Functional Connectivity in Humans

    Get PDF
    Transcranial focused ultrasound (tFUS) is an emerging method for non-invasive neuromodulation akin to transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). tFUS offers several advantages over electromagnetic methods including high spatial resolution and the ability to reach deep brain targets. Here we describe two experiments assessing whether tFUS could modulate mood in healthy human volunteers by targeting the right inferior frontal gyrus (rIFG), an area implicated in mood and emotional regulation. In a randomized, placebo-controlled, double-blind study, participants received 30 s of 500 kHz tFUS or a placebo control. Visual Analog Mood Scales (VAMS) assessed mood four times within an hour (baseline and three times after tFUS). Participants who received tFUS reported an overall increase in Global Affect (GA), an aggregate score from the VAMS scale, indicating a positive shift in mood. Experiment 2 examined resting-state functional (FC) connectivity using functional magnetic resonance imaging (fMRI) following 2 min of 500 kHz tFUS at the rIFG. As in Experiment 1, tFUS enhanced self-reported mood states and also decreased FC in resting state networks related to emotion and mood regulation. These results suggest that tFUS can be used to modulate mood and emotional regulation networks in the prefrontal cortex
    corecore