94 research outputs found

    Cooperative Effect of Coulomb Interaction and Electron-Phonon Coupling on the Heavy Fermion State in the Two-Orbital Periodic Anderson Model

    Full text link
    We investigate the two-orbital periodic Anderson model, where the local orbital fluctuations of f-electrons couple with a two-fold degenerate Jahn-Teller phonon, by using the dynamical mean-field theory. It is found that the heavy fermion state caused by the Coulomb interaction between f-electrons U is largely enhanced due to the electron-phonon coupling g, in contrast to the case with the single-orbital periodic Anderson model where the effects of U and g compete to each other. In the heavy fermion state for large UU and g, both the orbital and lattice fluctuations are enhanced, while the charge (valence) and spin fluctuations are suppressed. In the strong coupling regime, a sharp soft phonon mode with a large spectral weight is observed for small U, while a broad soft phonon mode with a small spectral weight is observed for large U. The cooperative effect of U and g for half-filling with two f-electrons per atom nf=2n_f=2 is more pronounced than that for quarter-filling with nf=1n_f=1.Comment: 8 pages, 11 figures, accepted for publication in JPS

    Low-lying excitations at the rare-earth site due to rattling motion in the filled skutterudite LaOs_4Sb_{12} revealed by ^{139}La NMR and ^{121/123}Sb NQR

    Full text link
    We report experimental results of nuclear magnetic resonance (NMR) at the La site and nuclear quadrupole resonance (NQR) at the Sb site in the filled skutterudite LaOs4_4Sb12_{12}. We found that the nuclear spin-lattice relaxation rate divided by temperature 1/T1T1/T_1T at the La site exhibits a different temperature dependence from that at the Sb site. Although 1/T1T1/T_1T at the Sb site is explained by the Korringa mechanism, 1/T1T1/T_1T at the La site exhibits a broad maximum around 50 K, showing the presence of an additional contribution at the La site. The additional low-lying excitations observed at the La site can be understood with the relaxation from anharmonic phonons due to the rattling motion of the La atoms.Comment: 5 pages, 4 figures, final version published in Phys. Rev. B (Rapid Communications

    Renaming dementia - an East Asian perspective

    Get PDF
    Worldwide, the number of individuals with dementia is growing in an epidemic manner, with an estimated 35.6 million people affected in 2010 (Prince et al., 2013). With the population aging in Asia, dementia care will become a major public health challenge in this region in the coming decades. Over half of the patients with dementia in the world will live in Asia by 2030. In China alone, a recent review of dementia studies showed that there were 9.2 million dementia patients in 2010 (Chan et al., 2013). These figures are staggering. In many Asian countries, dementia is regarded as a shameful illness, and the local terms for dementia are derogatory. Dementia carries a stigma that may lead to patients' reluctance in seeking treatment and delay in diagnosis. In addition, local names for dementia frequently conjure up pictures of severe stage of dementia, and may lead to therapeutic nihilism, discouraging mental health professionals from working with elderly patients with dementia. As Asia faces the challenges of a rapidly aging population and provisions of care for growing number of dementia patients, change in local names for dementia has become an issue of attentio

    Space Demonstration of Two-Layer Pop-Up Origami Deployable Membrane Reflectarray Antenna by 3U CubeSat OrigamiSat-2

    Get PDF
    3U CubeSat OrigamiSat-2 demonstrates a 50-cm × 50-cm two-layer pop-up Origami deployable membrane reflectarray antenna in space. The membrane has small stowage volume and high gain even though it has low flatness because of a large enough antenna area to cover its un-flatness. C-band transmitter is equipped in the CubeSat and offers 20-Mbps amateur satellite communication. In 3U size, a 1-m length deployable gravity gradient mast and magnetic torquer are equipped to stabilize and control its attitude. A camera is attached to the satellite to measure the shape of the membrane antenna. OrigamiSat-2 was selected as the Innovative Satellite Technology Demonstration-4 by Japan Aerospace Exploration Agency (JAXA) and is going to be launched in 2024 by Epsilon Launch Vehicle

    Hydrogen in Drinking Water Reduces Dopaminergic Neuronal Loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Mouse Model of Parkinson's Disease

    Get PDF
    It has been shown that molecular hydrogen (H2) acts as a therapeutic antioxidant and suppresses brain injury by buffering the effects of oxidative stress. Chronic oxidative stress causes neurodegenerative diseases such as Parkinson's disease (PD). Here, we show that drinking H2-containing water significantly reduced the loss of dopaminergic neurons in PD model mice using both acute and chronic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The concentration-dependency of H2 showed that H2 as low as 0.08 ppm had almost the same effect as saturated H2 water (1.5 ppm). MPTP-induced accumulation of cellular 8-oxoguanine (8-oxoG), a marker of DNA damage, and 4-hydroxynonenal (4-HNE), a marker of lipid peroxidation were significantly decreased in the nigro-striatal dopaminergic pathway in mice drinking H2-containing water, whereas production of superoxide (O2•−) detected by intravascular injection of dihydroethidium (DHE) was not reduced significantly. Our results indicated that low concentration of H2 in drinking water can reduce oxidative stress in the brain. Thus, drinking H2-containing water may be useful in daily life to prevent or minimize the risk of life style-related oxidative stress and neurodegeneration
    corecore