19 research outputs found

    MamuSNP: A Resource for Rhesus Macaque (Macaca mulatta) Genomics

    Get PDF
    We developed a novel method for identifying SNPs widely distributed throughout the coding and non-coding regions of a genome. The method uses large-scale parallel pyrosequencing technology in combination with bioinformatics tools. We used this method to generate approximately 23,000 candidate SNPs throughout the Macaca mulatta genome. We estimate that over 60% of the SNPs will be of high frequency and useful for mapping QTLs, genetic management, and studies of individual relatedness, whereas other less frequent SNPs may be useful as population specific markers for ancestry identification. We have created a web resource called MamuSNP to view the SNPs and associated information online. This resource will also be useful for researchers using a wide variety of Macaca species in their research

    Patterns of genetic variation and the role of selection in HTR1A and HTR1B in macaques (Macaca)

    Get PDF
    Research has increasingly highlighted the role of serotonin in behavior. However, few researchers have examined serotonin in an evolutionary context, although such research could provide insight into the evolution of important behaviors. The genus Macaca represents a useful model to address this, as this genus shows a wide range of behavioral variation. In addition, many genetic features of the macaque serotonin system are similar to those of humans, and as common models in biomedical research, knowledge of the genetic variation and evolution of serotonin functioning in macaques are particularly relevant for studies of human evolution. Here, we examine the role of selection in the macaque serotonin system by comparing patterns of genetic variation for two genes that code for two types of serotonin receptors – HTR1A and HTR1B – across five species of macaques. The pattern of variation is significantly different for HTR1A compared to HTR1B. Specifically, there is an increase in between-species variation compared to within-species variation for HTR1A. Phylogenetic analyses indicate that portions of HTR1A show an elevated level of nonsynonymous substitutions. Together these analyses are indicative of positive selection acting on HTR1A, but not HTR1B. Furthermore, the haplotype network for HTR1A is inconsistent with the species tree, potentially due to both deep coalescence and selection. The results of this study indicate distinct evolutionary histories for HTR1A and HTR1B, with HTR1A showing evidence of selection and a high level of divergence among species, a factor which may have an impact on biomedical research that uses these species as models. The wide genetic variation of HTR1A may also explain some of the species differences in behavior, although further studies on the phenotypic effect of the sequenced polymorphisms are needed to confirm this

    Ancestry, Plasmodium cynomolgi prevalence and rhesus macaque admixture in cynomolgus macaques (Macaca fascicularis) bred for export in Chinese breeding farms

    Get PDF
    Background: Most cynomolgus macaques (Macaca fascicularis) used in the United States as animal models are imported from Chinese breeding farms without documented ancestry. Cynomolgus macaques with varying rhesus macaque ancestry proportions may exhibit differences, such as susceptibility to malaria, that affect their suitability as a research model. Methods: DNA of 400 cynomolgus macaques from 10 Chinese breeding farms was genotyped to characterize their regional origin and rhesus ancestry proportion. A nested PCR assay was used to detect Plasmodium cynomolgi infection in sampled individuals. Results: All populations exhibited high levels of genetic heterogeneity and low levels of inbreeding and genetic subdivision. Almost all individuals exhibited an Indochinese origin and a rhesus ancestry proportion of 5%-48%. The incidence of P. cynomolgi infection in cynomolgus macaques is strongly associated with proportion of rhesus ancestry. Conclusions: The varying amount of rhesus ancestry in cynomolgus macaques underscores the importance of monitoring their genetic similarity in malaria research

    Do Dispersing Monkeys Follow Kin? Evidence from Gray-cheeked Mangabeys (Lophocebus albigena)

    Get PDF
    Among social vertebrates, immigrants may incur a substantial fitness cost when they attempt to join a new group. Dispersers could reduce that cost, or increase their probability of mating via coalition formation, by immigrating into groups containing first- or second-degree relatives. We here examine whether dispersing males tend to move into groups containing fathers or brothers in gray-cheeked mangabeys (Lophocebus albigena) in Kibale National Park, Uganda. We sampled blood from 21 subadult and adult male mangabeys in 7 social groups and genotyped them at 17 microsatellite loci. Twelve genotyped males dispersed to groups containing other genotyped adult males during the study; in only 1 case did the group contain a probable male relative. Contrary to the prediction that dispersing males would follow kin, relatively few adult male dyads were likely first- or second-degree relatives; opportunities for kin-biased dispersal by mangabeys appear to be rare. During 4 yr of observation, adult brothers shared a group only once, and for only 6 wk. Mean relatedness among adult males sharing a group was lower than that among males in different groups. Randomization tests indicate that closely related males share groups no more often than expected by chance, although these tests had limited power. We suggest that the demographic conditions that allow kin-biased dispersal to evolve do not occur in mangabeys, may be unusual among primates, and are worth further attention

    Population and landscape genetics of an introduced species (M. fascicularis) on the island of Mauritius.

    No full text
    The cynomolgus macaque, Macaca fascicularis, was introduced onto the island of Mauritius in the early 17(th) century. The species experienced explosive population growth, and currently exists at high population densities. Anecdotes collected from nonhuman primate trappers on the island of Mauritius allege that animals from the northern portion of the island are larger in body size than and superior in condition to their conspecifics in the south. Although previous genetic studies have reported Mauritian cynomolgus macaques to be panmictic, the individuals included in these studies were either from the southern/central or an unknown portion of the island. In this study, we sampled individuals broadly throughout the entire island of Mauritius and used spatial principle component analysis to measure the fine-scale correlation between geographic and genetic distance in this population. A stronger correlation between geographic and genetic distance was found among animals in the north than in those in the southern and central portions of the island. We found no difference in body weight between the two groups, despite anecdotal evidence to the contrary. We hypothesize that the increased genetic structure among populations in the north is related to a reduction in dispersal distance brought about by human habitation and tourist infrastructure, but too recent to have produced true genetic differentiation

    Population and Landscape Genetics of an Introduced Species (<em>M. fascicularis</em>) on the Island of Mauritius

    Get PDF
    <div><p>The cynomolgus macaque, <em>Macaca</em> fascicularis, was introduced onto the island of Mauritius in the early 17<sup>th</sup> century. The species experienced explosive population growth, and currently exists at high population densities. Anecdotes collected from nonhuman primate trappers on the island of Mauritius allege that animals from the northern portion of the island are larger in body size than and superior in condition to their conspecifics in the south. Although previous genetic studies have reported Mauritian cynomolgus macaques to be panmictic, the individuals included in these studies were either from the southern/central or an unknown portion of the island. In this study, we sampled individuals broadly throughout the entire island of Mauritius and used spatial principle component analysis to measure the fine-scale correlation between geographic and genetic distance in this population. A stronger correlation between geographic and genetic distance was found among animals in the north than in those in the southern and central portions of the island. We found no difference in body weight between the two groups, despite anecdotal evidence to the contrary. We hypothesize that the increased genetic structure among populations in the north is related to a reduction in dispersal distance brought about by human habitation and tourist infrastructure, but too recent to have produced true genetic differentiation.</p> </div

    The nearest-neighbor connection network used to define spatial relationships between sampling sites.

    No full text
    <p>The size and color of the square is relative to the global scores of the spatial autocorrelation analysis; for example, large white squares denote a large, negative global score and large, black squares denote large, positive global scores.</p

    Body weight at capture for each of five age groups.

    No full text
    <p>No individuals in the oldest two age groups were sampled from the northern population so only three statistical comparisons could be made. There were no statistically significant differences in body weight between the two groups.</p
    corecore