32 research outputs found

    Transcriptome-wide Mapping Reveals Widespread Dynamic-Regulated Pseudouridylation of ncRNA and mRNA

    Get PDF
    Pseudouridine is the most abundant RNA modification, yet except for a few well-studied cases, little is known about the modified positions and their function(s). Here, we develop Ψ-seq for transcriptome-wide quantitative mapping of pseudouridine. We validate Ψ-seq with spike-ins and de novo identification of previously reported positions and discover hundreds of unique sites in human and yeast mRNAs and snoRNAs. Perturbing pseudouridine synthases (PUS) uncovers which pseudouridine synthase modifies each site and their target sequence features. mRNA pseudouridinylation depends on both site-specific and snoRNA-guided pseudouridine synthases. Upon heat shock in yeast, Pus7p-mediated pseudouridylation is induced at >200 sites, and PUS7 deletion decreases the levels of otherwise pseudouridylated mRNA, suggesting a role in enhancing transcript stability. rRNA pseudouridine stoichiometries are conserved but reduced in cells from dyskeratosis congenita patients, where the PUS DKC1 is mutated. Our work identifies an enhanced, transcriptome-wide scope for pseudouridine and methods to dissect its underlying mechanisms and function

    Comparative analysis of RNA sequencing methods for degraded or low-input samples

    Get PDF
    available in PMC 2014 January 01RNA-seq is an effective method for studying the transcriptome, but it can be difficult to apply to scarce or degraded RNA from fixed clinical samples, rare cell populations or cadavers. Recent studies have proposed several methods for RNA-seq of low-quality and/or low-quantity samples, but the relative merits of these methods have not been systematically analyzed. Here we compare five such methods using metrics relevant to transcriptome annotation, transcript discovery and gene expression. Using a single human RNA sample, we constructed and sequenced ten libraries with these methods and compared them against two control libraries. We found that the RNase H method performed best for chemically fragmented, low-quality RNA, and we confirmed this through analysis of actual degraded samples. RNase H can even effectively replace oligo(dT)-based methods for standard RNA-seq. SMART and NuGEN had distinct strengths for measuring low-quantity RNA. Our analysis allows biologists to select the most suitable methods and provides a benchmark for future method development.National Institutes of Health (U.S.) (Pioneer Award DP1-OD003958-01)National Human Genome Research Institute (U.S.) (NHGRI) 1P01HG005062-01)National Human Genome Research Institute (U.S.) (NHGRI Center of Excellence in Genome Science Award 1P50HG006193-01)Howard Hughes Medical Institute (Investigator)Merkin Family Foundation for Stem Cell ResearchBroad Institute of MIT and Harvard (Klarman Cell Observatory)National Human Genome Research Institute (U.S.) (NHGRI grant HG03067)Fonds voor Wetenschappelijk Onderzoek--Vlaandere

    The Regulatory Factor ZFHX3 Modifies Circadian Function in SCN via an AT Motif-Driven Axis

    Get PDF
    SummaryWe identified a dominant missense mutation in the SCN transcription factor Zfhx3, termed short circuit (Zfhx3Sci), which accelerates circadian locomotor rhythms in mice. ZFHX3 regulates transcription via direct interaction with predicted AT motifs in target genes. The mutant protein has a decreased ability to activate consensus AT motifs in vitro. Using RNA sequencing, we found minimal effects on core clock genes in Zfhx3Sci/+ SCN, whereas the expression of neuropeptides critical for SCN intercellular signaling was significantly disturbed. Moreover, mutant ZFHX3 had a decreased ability to activate AT motifs in the promoters of these neuropeptide genes. Lentiviral transduction of SCN slices showed that the ZFHX3-mediated activation of AT motifs is circadian, with decreased amplitude and robustness of these oscillations in Zfhx3Sci/+ SCN slices. In conclusion, by cloning Zfhx3Sci, we have uncovered a circadian transcriptional axis that determines the period and robustness of behavioral and SCN molecular rhythms

    The Regulatory Factor ZFHX3 Modifies Circadian Function in SCN via an at Motif-Driven Axis

    Get PDF
    We identified a dominant missense mutation in the SCN transcription factor Zfhx3, termed short circuit (Zfhx3Sci), which accelerates circadian locomotor rhythms in mice. ZFHX3 regulates transcription via direct interaction with predicted AT motifs in target genes. The mutant protein has a decreased ability to activate consensus AT motifs in vitro. Using RNA sequencing, we found minimal effects on core clock genes in Zfhx3Sci/+ SCN, whereas the expression of neuropeptides critical for SCN intercellular signaling was significantly disturbed. Moreover, mutant ZFHX3 had a decreased ability to activate AT motifs in the promoters of these neuropeptide genes. Lentiviral transduction of SCN slices showed that the ZFHX3-mediated activation of AT motifs is circadian, with decreased amplitude and robustness of these oscillations in Zfhx3Sci/+ SCN slices. In conclusion, by cloning Zfhx3Sci, we have uncovered a circadian transcriptional axis that determines the period and robustness of behavioral and SCN molecular rhythms

    The Atypical Calpains: Evolutionary Analyses and Roles in Caenorhabditis elegans Cellular Degeneration

    Get PDF
    The calpains are physiologically important Ca2+-activated regulatory proteases, which are divided into typical or atypical sub-families based on constituent domains. Both sub-families are present in mammals, but our understanding of calpain function is based primarily on typical sub-family members. Here, we take advantage of the model organism Caenorhabditis elegans, which expresses only atypical calpains, to extend our knowledge of the phylogenetic evolution and function of calpains. We provide evidence that a typical human calpain protein with a penta EF hand, detected using custom profile hidden Markov models, is conserved in ancient metazoans and a divergent clade. These analyses also provide evidence for the lineage-specific loss of typical calpain genes in C. elegans and Ciona, and they reveal that many calpain-like genes lack an intact catalytic triad. Given the association between the dysregulation of typical calpains and human degenerative pathologies, we explored the phenotypes, expression profiles, and consequences of inappropriate reduction or activation of C. elegans atypical calpains. These studies show that the atypical calpain gene, clp-1, contributes to muscle degeneration and reveal that clp-1 activity is sensitive to genetic manipulation of [Ca2+]i. We show that CLP-1 localizes to sarcomeric sub-structures, but is excluded from dense bodies (Z-disks). We find that the muscle degeneration observed in a C. elegans model of dystrophin-based muscular dystrophy can be suppressed by clp-1 inactivation and that nemadipine-A inhibition of the EGL-19 calcium channel reveals that Ca2+ dysfunction underlies the C. elegans MyoD model of myopathy. Taken together, our analyses highlight the roles of calcium dysregulation and CLP-1 in muscle myopathies and suggest that the atypical calpains could retain conserved roles in myofilament turnover

    COVID-19 vaccination single cell datasets

    No full text
    The datasets presented here comprise the sequencing data featured in the research paper titled: "Multimodal single-cell datasets characterize antigen-specific CD8+ T cells across SARS-CoV-2 vaccination and infection": https://www.nature.com/articles/s41590-023-01608-9 Peripheral Blood Mononuclear Cell (PBMC) samples utilized for both CITE-seq and ASAP-seq were systematically collected at four distinct time intervals: Pre-vaccination (Day 0) Post-primary vaccination (Day 2 and Day 10. Seven days post-boost vaccination (Day 28). The count matrix folder contains count matrices for each experimental type, specifically CITE-seq, ASAP-seq, and ECCITE-seq. In addition, we have included the fully integrated, processed Seurat objects for downstream analysis. Details of the content within the count matrix folder are as follows: The RNA, ATAC, and TCR modality outputs were generated using the 10x Cellranger pipeline. HTO and ADT modalities were mapped with Alevin. Outlined below are the three processed single-cell datasets: PBMC_vaccine_CITE.rds: 3' RNA and surface proteins (173 TotalSeq-A antibodies) PBMC_vaccine_ASAP.rds: Chromatin accessibility and surface proteins (173 TotalSeq-A antibodies) PBMC_vaccine_ECCITE_TCR.rds: 5' RNA, surface proteins (137 TotalSeq-C antibodies), TCR and dextramer loaded with peptides of SARS-CoV-2 spike protein. antigen_module_genes.rds: This file contains the vaccine-induced gene sets. antigen_module_peaks.rds: This file contains the DE peaks specific for vaccine-induced cells. To map the scRNA-seq query dataset onto our CITE-seq reference: library(Seurat) PBMC_CITE <- readRDS("/zenedo/PBMC_vaccine_CITE.rds") query_scRNA <- readRDS("/home/xx/your_own_data.rds") anchors <- FindTransferAnchors( reference = PBMC_CITE, query = query_scRNA, normalization.method = "SCT", k.anchor = 5, reference.reduction = "spca", dims = 1:50) query_scRNA <- MapQuery( anchorset = anchors, query = query_scRNA, reference = PBMC_CITE, refdata = list( l1 = "celltypel1", l2 = "celltypel2", l3 = "celltypel3"), reference.reduction = "spca", reduction.model = "wnn.umap") To use the scATAC-seq data, please run the commands below to update the path of the fragment file for the object. Vaccine_ASAP <- readRDS("PBMC_vaccine_ASAP.rds") # remove fragment file information Fragments(Vaccine_ASAP) <- NULL # Update the path of the fragment file Fragments(Vaccine_ASAP) <- CreateFragmentObject(path = "download/PBMC_vaccine_ASAP_fragments.tsv.gz", cells = Cells(Vaccine_ASAP)

    High-Resolution Mapping Reveals a Conserved, Widespread, Dynamic mRNA Methylation Program in Yeast Meiosis

    Get PDF
    N[superscript 6]-methyladenosine (m[superscript 6]A) is the most ubiquitous mRNA base modification, but little is known about its precise location, temporal dynamics, and regulation. Here, we generated genomic maps of m[superscript 6]A sites in meiotic yeast transcripts at nearly single-nucleotide resolution, identifying 1,308 putatively methylated sites within 1,183 transcripts. We validated eight out of eight methylation sites in different genes with direct genetic analysis, demonstrated that methylated sites are significantly conserved in a related species, and built a model that predicts methylated sites directly from sequence. Sites vary in their methylation profiles along a dense meiotic time course and are regulated both locally, via predictable methylatability of each site, and globally, through the core meiotic circuitry. The methyltransferase complex components localize to the yeast nucleolus, and this localization is essential for mRNA methylation. Our data illuminate a conserved, dynamically regulated methylation program in yeast meiosis and provide an important resource for studying the function of this epitranscriptomic modification.American Cancer Society (Professor of Genetics)National Institutes of Health (U.S.) (NIH Grant GM035010)National Institutes of Health (U.S.) (NIH Grant U54 HG003067)Broad Institute of MIT and Harvard (Funds)National Human Genome Research Institute (U.S.) (NHGRI Pioneer Award)Howard Hughes Medical InstituteHuman Frontier Science Program (Strasbourg, France) (Fellowship

    Evolutionary systems biology reveals patterns of rice adaptation to drought-prone agro-ecosystems.

    No full text
    Rice (Oryza sativa) was domesticated around 10,000 years ago and has developed into a staple for half of humanity. The crop evolved and is currently grown in stably wet and intermittently dry agro-ecosystems, but patterns of adaptation to differences in water availability remain poorly understood. While previous field studies have evaluated plant developmental adaptations to water deficit, adaptive variation in functional and hydraulic components, particularly in relation to gene expression, has received less attention. Here, we take an evolutionary systems biology approach to characterize adaptive drought resistance traits across roots and shoots. We find that rice harbors heritable variation in molecular, physiological, and morphological traits that is linked to higher fitness under drought. We identify modules of co-expressed genes that are associated with adaptive drought avoidance and tolerance mechanisms. These expression modules showed evidence of polygenic adaptation in rice subgroups harboring accessions that evolved in drought-prone agro-ecosystems. Fitness-linked expression patterns allowed us to identify the drought-adaptive nature of optimizing photosynthesis and interactions with arbuscular mycorrhizal fungi. Taken together, our study provides an unprecedented, integrative view of rice adaptation to water-limited field conditions
    corecore