14 research outputs found

    Antibiotics and Antimicrobial Resistance in the COVID-19 Era: Perspective from Resource-Limited Settings

    Get PDF
    The dissemination of COVID-19 around the globe has been followed by an increased consumption of antibiotics. This is related to the concern for bacterial superinfection in COVID-19 patients. The identification of bacterial pathogens is challenging in low and middle income countries (LMIC), as there are no readily-available and cost-effective clinical or biological markers that can effectively discriminate between bacterial and viral infections. Fortunately, faced with the threat of COVID-19 spread, there has been a growing awareness of the importance of antimicrobial stewardship programs, as well as infection prevention and control measures that could help reduce the microbial load and hence circulation of pathogens, with a reduction in dissemination of antimicrobial resistance. These measures should be improved particularly in developing countries. Studies need to be conducted to evaluate the worldwide evolution of antimicrobial resistance during the COVID-19 pandemic, because pathogens do not respect borders. This issue takes on even greater importance in developing countries, where data on resistance patterns are scarce, conditions for infectious pathogen transmission are optimal, and treatment resources are suboptimal

    Eumycetoma causative agents:A systematic review to inform the World Health Organization priority list of fungal pathogens

    Get PDF
    The World Health Organization, in response to the growing burden of fungal disease, established a process to develop a fungal priority pathogens list. This systematic review aimed to evaluate the epidemiology and impact of eumycetoma. PubMed and Web of Science were searched to identify studies published between 1 January 2011 and 19 February 2021. Studies reporting on mortality, inpatient care, complications and sequelae, antifungal susceptibility, risk factors, preventability, annual incidence, global distribution, and emergence during the study time frames were selected. Overall, 14 studies were eligible for inclusion. Morbidity was frequent with moderate to severe impairment of quality of life in 60.3%, amputation in up to 38.5%, and recurrent or long-term disease in 31.8%-73.5% of patients. Potential risk factors included male gender (56.6%-79.6%), younger age (11-30 years; 64%), and farming occupation (62.1%-69.7%). Mycetoma was predominantly reported in Sudan, particularly in central Sudan (37%-76.6% of cases). An annual incidence of 0.1/100 000 persons and 0.32/100  000 persons/decade was reported in the Philippines and Uganda, respectively. In Uganda, a decline in incidence from 3.37 to 0.32/100  000 persons between two consecutive 10-year periods (2000-2009 and 2010-2019) was detected. A community-based, multi-pronged prevention programme was associated with a reduction in amputation rates from 62.8% to 11.9%. With the pre-specified criteria, no studies of antifungal drug susceptibility, mortality, and hospital lengths of stay were identified. Future research should include larger cohort studies, greater drug susceptibility testing, and global surveillance to develop evidence-based treatment guidelines and to determine more accurately the incidence and trends over time.</p

    The approach of World Health Organization to articulate the role and assure impact of vaccines against antimicrobial resistance

    No full text
    Antimicrobial resistance (AMR) is a growing global problem and there were an estimated 4.95 million deaths associated with bacterial AMR worldwide in 2019. Vaccines can impact AMR by preventing infections and reducing the need for antibiotics which will inadvertently slow the emergence of AMR. Effective infection prevention and control (IPC) has been identified as the cornerstone action to combat AMR by the World Health Assembly and the Global Action plan on AMR. Similarly, the Immunization Agenda 2030 highlights vaccines as critical tools to combat AMR. This article summarizes the strategy of the World Health Organization to understand, articulate and communicate the important role of vaccines in countering AMR. The work is organized around developing a strategy, understanding the pipeline of vaccines in development, articulating the value of vaccines against AMR, and assuring sustainable impact of vaccines at a country level to combat AMR

    Characterizing Shigella species distribution and antimicrobial susceptibility to ciprofloxacin and nalidixic acid in Latin America between 2000-2015.

    No full text
    BackgroundShigellosis is the second leading cause of diarrheal death globally. The global burden has been complicated by the emergence of Shigella strains resistant to first line antibiotic treatments such as ciprofloxacin. This study aims to describe the epidemiologic distribution of the most common Shigella species, and their antimicrobial susceptibility patterns to ciprofloxacin and nalidixic acid (NA) in Latin America.MethodsLaboratory data from 19 countries were obtained through the Latin American Network for Antimicrobial Resistance Surveillance (ReLAVRA) from 2000-2015. The Clinical Laboratory Standards Institute reduced susceptibility breakpoints for Enterobacteriaceae was used to interpret the disc diffusion tests for Shigella susceptibility to ciprofloxacin and NA. Negative binominal regression was used to analyze longitudinal trends of Shigella isolates antimicrobial susceptibility.Results79,548 Shigella isolates were tested and reported between 2000-2015. The most common isolated species were S. flexneri (49%), and S. sonnei (28%). There was a steady increase in the proportion of S. sonnei isolates within the region(pConclusionThere is an increasing trend in Shigella nonsusceptibility to ciprofloxacin and NA, including among the most common shigella species, in Latin America. This rise of nonsusceptibility among Shigella species to commonly used treatments such as ciprofloxacin is alarming and threatens the control and management of this currently treatable infection. Improved data quality, collection and reporting is needed in Latin America to respond effectively to the rising trends observed. This includes the need for quality isolate level epidemiological data; molecular data, and data on antibiotic consumption and use

    The role of bacterial vaccines in the fight against antimicrobial resistance: an analysis of the preclinical and clinical development pipeline

    No full text
    International audienceVaccines can be highly effective tools in combating antimicrobial resistance as they reduce infections caused by antibiotic-resistant bacteria and antibiotic consumption associated with disease. This Review looks at vaccine candidates that are in development against pathogens on the 2017 WHO bacterial priority pathogen list, in addition to Clostridioides difficile and Mycobacterium tuberculosis. There were 94 active preclinical vaccine candidates and 61 active development vaccine candidates. We classified the included pathogens into the following four groups: Group A consists of pathogens for which vaccines already exist-ie, Salmonella enterica serotype Typhi, Streptococcus pneumoniae, Haemophilus influenzae type b, and M tuberculosis. Group B consists of pathogens with vaccines in advanced clinical development-ie, extra-intestinal pathogenic Escherichia coli, Salmonella enterica serotype Paratyphi A, Neisseria gonorrhoeae, and C difficile. Group C consists of pathogens with vaccines in early phases of clinical development-ie, enterotoxigenic E coli, Klebsiella pneumoniae, non-typhoidal Salmonella, Shigella spp, and Campylobacter spp. Finally, group D includes pathogens with either no candidates in clinical development or low development feasibility-ie, Pseudomonas aeruginosa, Acinetobacter baumannii, Staphylococcus aureus, Helicobacter pylori, Enterococcus faecium, and Enterobacter spp. Vaccines are already important tools in reducing antimicrobial resistance and future development will provide further opportunities to optimise the use of vaccines against resistance

    The role of vaccines in reducing antimicrobial resistance: A review of potential impact of vaccines on AMR and insights across 16 vaccines and pathogens

    No full text
    In 2019, an estimated 4.95 million deaths were linked to antimicrobial resistance (AMR). Vaccines can prevent many of these deaths by averting both drug-sensitive and resistant infections, reducing antibiotic usage, and lowering the likelihood of developing resistance genes. However, their role in mitigating AMR is currently underutilized. This article builds upon previous research that utilizes Vaccine Value Profiles—tools that assess the health, socioeconomic, and societal impact of pathogens—to inform vaccine development. We analyze the effects of 16 pathogens, covered by Vaccine Value Profiles, on AMR, and explore how vaccines could reduce AMR. The article also provides insights into vaccine development and usage. Vaccines are crucial in lessening the impact of infectious diseases and curbing the development of AMR. To fully realize their potential, vaccines must be more prominently featured in the overall strategy to combat AMR. This requires ongoing investment in research and development of new vaccines and the implementation of additional prevention and control measures to address this global threat effectively.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Impact of climate change and natural disasters on fungal infections

    No full text
    International audienceThe effects of climate change and natural disasters on fungal pathogens and the risks for fungal diseases remain incompletely understood. In this literature review, we examined how fungi are adapting to an increase in the Earth’s temperature and are becoming more thermotolerant, which is enhancing fungal fitness and virulence. Climate change is creating conditions conducive to the emergence of new fungal pathogens and is priming fungi to adapt to previously inhospitable environments, such as polluted habitats and urban areas, leading to the geographical spread of some fungi to traditionally non-endemic areas. Climate change is also contributing to increases in the frequency and severity of natural disasters, which can trigger outbreaks of fungal diseases and increase the spread of fungal pathogens. The populations mostly affected are the socially vulnerable. More awareness, research, funding, and policies on the part of key stakeholders are needed to mitigate the effects of climate change and disaster-related fungal diseases
    corecore