2 research outputs found

    A Compilation of Global Bio-Optical In Situ Data for Ocean-Colour Satellite Applications

    Get PDF
    A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite-data records. Here we describe the data compiled for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT, GeP&CO), span between 1997 and 2012, and have a global distribution. Observations of the following variables were compiled: spectral remote-sensing reflectances, concentrations of chlorophyll a, spectral inherent optical properties and spectral diffuse attenuation coefficients. The data were from multi-project archives acquired via the open internet services or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenisation, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The final result is a merged table designed for validation of satellite-derived ocean-colour products and available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) were preserved throughout the work and made available in the final table. Using all the data in a validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. By making available the metadata, it is also possible to analyse each set of data separately. The compiled data are available at doi:10.1594/PANGAEA.854832 (Valente et al., 2015)

    Guidelines towards an integrated ocean observation system for ecosystems and biogeochemical cycles

    Get PDF
    The observation of biogeochemical cycles and ecosystems has traditionally been based on ship-based platforms. The obvious consequence is that the measured properties have been dramatically undersampled. Recent technological advances in miniature, low power biogeochemical sensors and autonomous platforms open remarkable perspectives for observing the “biological” ocean, notably at critical spatio-temporal scales which have been out of reach until present. The availability of this new observation technology thus makes it possible to envision the development of a globally integrated observation system that would serve both scientific as well as operational needs. This in situ systemm should be fully designed and implemented in tight synergy with two other essential elements of an ocean observation system, first satellite ocean color radiometry and second advanced numerical models of biogeochemical cycles and ecosystems
    corecore