87 research outputs found

    Factors affecting the performance of triangular pyramid solar still

    Get PDF
    This work presents a few important factors that affect the performance of a triangular pyramid solar still. An experimental work has been conducted to find the effect of water depth on the performance of the triangular pyramid solar still. From the present study, it is concluded that the convective and evaporative heat transfer coefficients are important for designing solar distillation systems and the effect of temperature difference between the evaporative and condensing surfaces is also important to optimize the operating temperature range. The condensing area of the solar still is more than that of evaporating area. Thus the experimental results showed that the effect of depth of water in the solar still affects the fresh water production. Nevertheless, outdoor experimental tests were conducted to study the effect of wind speed variations to cool down the glass cover. It was found that increasing the wind speed from 1.5 to 3 m/s and to 4.5 m/s has the effect of increasing the still productivity by 8 and 15.5% respectively

    Enhancing the heat transfer of triangular pyramid solar still using phase change material as storage material

    Get PDF
    This paper presents the method of improvement of enhancing the performance of triangular pyramid solar still with and without latent heat energy storage. For comparing the productivity of solar still with and without LHTESS a solar still is designed, fabricated. Experiments are conducted in hot and humid climate of Chennai, India. Paraffin wax is used as LHTESS due to its feasible general and economic properties. The hourly productivity is slightly higher in case of solar still without LHTESS during sunny days. There is an increase of about 35% in production of fresh water with LHTESS than that of solar still without LHTESS. Also it was found that during the off shine period the fresh water produced from the still is higher. The solar still with and without LHTESS were found to be 4.5 L/m2day and 3.5 L/m2day

    Theoretical Analysis of Continuous Heat Extraction from Absorber of Solar Still for Improving the Productivity

    Get PDF
    This paper communicates the theoretical analysis of continuous waste heat extraction from the other side of absorber plate. For theoretical analysis two conditions are determined one is the mass of water in the absorber and another one is mass flow rate of water around the absorber plate. Results indicated that the water temperature is reached maximum at 10 kg of mass and 5 kg/hr mass flow of water and the heat extracted from the absorber is higher at optimum mass flow of 5 kg/hr. Also, the higher temperature difference between the water and the collector cover is found during the off-shine period. The maximum achievable hourly productivity of 0.9 and 0.5 kg is found for the solar still with and without circulation respectively. The yield from present model with continuous heat extraction is increased from 3 to 5.5 kg/m2. As the approached method is more new to the society it may be determined by Agouz- Nagarajan- Sathyamurthy (ANS) model

    Productivity enhancements of compound parabolic concentrator tubular solar stills

    Get PDF
    The performance of compound parabolic concentrator assisted tubular solar still (CPC-TSS) and compound parabolic concentrator-concentric tubular solar still (CPC-CTSS) (to allow cooling water) with different augmentation systems were studied. A rectangular saline water trough of dimension 2 m × 0.03 m × 0.025 m was designed and fabricated. The effective collector area of the still is 2 m × 1 m with five sets of tubular still – CPC collectors placed horizontally with north-south orientation. Hot water taken from the CPC-CTSS was integrated to a pyramid type and single slope solar still. Diurnal variations of water temperature, air temperature, cover temperature and distillate yield were recorded. The results showed that, the productivity of the un-augmented CPC-TSS and CPC-CTSS were 3710 ml/day and 4960 ml/day, respectively. With the heat extraction technique, the productivity of CPC-CTSS with a single slope solar still and CPC-CTSS with a pyramid solar still were found as 6460 ml/day and 7770 ml/day, respectively. The process integration with different systems cost was found slightly higher but the overall efficiency and the produced distilled water yield was found augmented

    Comparative study of tubular solar stills with phase change material and nano-enhanced phase change mMaterial

    Get PDF
    This study is intended to investigate and analyze the operational performances of the Conventional Tubular Solar Still (CTSS), Tubular Solar Still with Phase Change Material (TSS-PCM) and Tubular Solar Still with Nano Phase Change Material (TSS-NPCM). Paraffin wax and graphene plusparaffin wax were used in the CTSS to obtain the modified solar still models. The experimental study was carried out in the three stills to observe the operational parameters at a water depth of 1 cm. The experiment revealed that TSS-NPCM showed the best performance and the highest yield in comparison to other stills. The distillate yield from the CTSS, TSS-PCM and TSS-NPCM was noted to be 4.3, 6.0 and 7.9 kg, respectively, the daily energy efficiency of the stills was observed to be 31%, 46% and 59%, respectively, and the daily exergy efficiency of the stills was recorded to be 1.67%, 2.20% and 3.75%, respectively. As the performance of the TSS-NPCM was enhanced, the cost of freshwater yield obtained was also low in contrast to the other two types of stills

    Effect of parabolic solar energy collectors for water distillation

    Get PDF
    This research article briefly summarizes the augmentation of condensate output using concentrators. This study compares a single-slope solar still, a compound conical concentrator (CCC) solar still, and a compound parabolic concentrator–tubular solar still (CPC–TSS). The effect of miniaturization of the absorber (increase in the concentration factor) and some modifications in the solar still assembly show a remarkable increase in output. The measured daily yield rate per square meter of absorber area of the single slope solar still, CCC solar still, and CPC–TSS is 2,100, 18,000, and 6,100 ml, respectively. It was found that the CCC solar still provides the maximum yield

    Effects of electric potential, NaCl, pH and distance between electrodes on efficiency of electrolysis in landfill leachate treatment

    Get PDF
    This study investigated the effects of different parameters on the removal efficiencies of organic and inorganic pollutants in landfill leachate treatment by electrolysis. Different parameters were considered such as the electric potential (e.g., 24, 40 and 60 V), hydraulic retention time (HRT) (e.g., 40, 60, 80, 100 and 120 min), sodium chloride (NaCl) concentration (e.g., 1, 3, 5 and 7%), pH (e.g., 3, 7 and 9), electrodes materials [e.g., aluminum (Al) and iron (Fe)] and distance between electrodes (e.g., 1, 2 and 3 cm). The best operational condition of electrolysis was then recommended. The electric potential of 60 V with HRT of 120 min at 5% of NaCl solution using Al as anode and Fe as cathode (kept at a distance of 3 cm) was the most efficient condition which increased the removal efficiencies of various parameters such as turbidity, salinity, total suspended solids (TSS), total dissolved solids (TDS), biochemical oxygen demand (BOD), chemical oxygen demand (COD) and heavy metals (e.g., Zn and Mn). The higher removal percentages of many parameters, especially COD (94%) and Mn (93%) indicated that the electrolysis is an efficient technique for multi-pollutants (e.g., organic, inorganic and heavy metals) removal from the landfill leachate

    A new activated carbon prepared from sago palm bark through physiochemical activated process with zinc chloride

    Get PDF
    This study aimed to use sago palm bark to formulate a new adsorbent activated carbon (AC) contains highly surface area through physicochemical method via ZnCl2 activation. Conduction of the activation process was performed at varying impregnation ratios (0.5-2.0). Thermal decomposition was determined using thermogravimetric analysis (TGA). Porosity characterizations of AC were conducted by using N2 adsorption-desorption in order to characterise properties like pore volume, surface area, and micropore volume. To detect the presence of functional groups which were found on the surface of AC, Fourier Transform Infrared Spectroscopy (FTIR) analysis was utilised. Morphology of AC was determined using scanning electron microscopy (SEM) and X-ray spectroscopy (EDX). Experimental results showed that maximum AC surface area was 1737 m2/g. Activation temperature was revealed to be 700oC, with chemical impregnation ratio of zinc chloride to a precursor equal to 1.5/1

    Chemical characteristics of native soil in shrimp Gher and agricultural land

    Get PDF
    This study was conducted to characterize the native soil at shrimp Gher and agricultural land in Khulna, Bangladesh. Eight locations were selected and among them five Ghers from south part of Dumuria which is about 60 km away from KUET campus, Khulna, Bangladesh. In the laboratory, various parameters such as salinity, organic content, chloride, pH, alkalinity, conductivity and moisture content were determined by following standard methods. The chloride and alkalinity were determined manually and pH, conductivity and salinity were determined by digital meter. The organic and moisture content both were highest at 30 cm depth for both the cases of shrimp Gher and agricultural land. Chloride was highest at 15 cm depth for both the cases shrimp Gher and agricultural land. Alkalinity was highest at 30 cm depth for shrimp Gher, however, the lowest was for agricultural land. It is concluded that the salinity and organic content vary with depth, age and soil condition
    corecore