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Abstract: This study is intended to investigate and analyze the operational performances of
the Conventional Tubular Solar Still (CTSS), Tubular Solar Still with Phase Change Material (TSS-PCM)
and Tubular Solar Still with Nano Phase Change Material (TSS-NPCM). Paraffin wax and graphene
plusparaffin wax were used in the CTSS to obtain the modified solar still models. The experimental
study was carried out in the three stills to observe the operational parameters at a water depth of
1 cm. The experiment revealed that TSS-NPCM showed the best performance and the highest yield
in comparison to other stills. The distillate yield from the CTSS, TSS-PCM and TSS-NPCM was noted
to be 4.3, 6.0 and 7.9 kg, respectively, the daily energy efficiency of the stills was observed to be 31%,
46% and 59%, respectively, and the daily exergy efficiency of the stills was recorded to be 1.67%,
2.20% and 3.75%, respectively. As the performance of the TSS-NPCM was enhanced, the cost of
freshwater yield obtained was also low in contrast to the other two types of stills.

Keywords: tubular solar still; distilled water; phase change materials; nano graphene

1. Introduction

The world is breaking barriers to achieve advancements and developments in all fields. However,
in this race of so-called development, nature seems to be affected. The lack of freshwater is a visible
issue. Though developed nations have found a way to tackle this adverse effect, underdeveloped
and developing countries are still fighting for survival. Scientists have been developing various ideas
and models to solve the issue of lack of freshwater and electricity [1–4]. The tubular design of the solar
still has its own advantages, and other models have proved to be effective [5–7]. Several modifications
have been added to the Tubular Solar Still (TSS) to make it even more productive [8–10]. The tubular
model is one of the effective ways to get potable water [11–13]. Arunkumar et al. [14] analyzed
the productivity of the TSS with a parabolic concentrator (PC) and the concentric TSS with a PC.
Several factors, e.g., temperatures of water, air and yield, were noted. The potable water yield from
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the conventional PC-TSS (CPC-TSS) was seen to be 3710 mL/day, while in Concentric Parabolic
Concentrator (CPC)-Conventional-TSS (CPC-CTSS), it was 4960 mL/day.

Chang et al. [15] investigated a new model vertical tubular solar device to desalinate brackish
water using a multi-effect. It was reported that it achieved a distillate yield of 1.162 kg/h when there
was a 400 W heat input. Elashmawy [16] examined the performance of a TSS along with a PC solar
tracking system. This model enhanced the yield by 676% and minimized the yield cost by 45.5%.
Elshamy and El-Said [17] researched the TSS with a semi-circular corrugated absorber for improving
its efficiency. The corrugated absorber plate increased the desalination rate by 26.27%. The energy
and exergy efficiencies also rose by 25.9% and 23.7% in each instance in comparison to the efficiency of
the still with a flat plate. Hou et al. [18] introduced a new multi-effect vertical TSS model and analyzed
the productivity increase by using the effect of carrier gas-water vapor mixture. Compared to air as a
carrier gas, helium gas produced the highest yield of 1.19 kg/h and showed a 30.76% enhancement
in yield.

Hou et al. [19] studied a novel vertical TSS to determine the mass transfer co-efficient and methods
to enhance it. The highest yield was recorded to be 653.89 g/h. Rahbar et al. [20] did a relative study
between tubular and triangular stills to evaluate their performance. In general, the tubular still showed
better yield productivity than the triangular solar still. Xie et al. [21] experimented with a TSS which
functioned in a vacuum condition. The highest efficiency of the still was noted to be above 0.9%.
Al-Hamadani and Shukla [22] analyzed the productivity and performance of a solar still by using lauric
acid and myristic acid separately as Phase Change Material (PCM). It was reported that the usage
of lauric acid showed greater productivity and energy efficiencies in comparison to myristic acid.
Ansari et al. [23] analyzed the output and efficiency of a solar still in passive mode along with a system to
store heat energy. Asbik et al. [24] reported the exergy of a solar still which made use of paraffin as PCM
to store and retrieve energy. El-Sebaii et al. [25] studied the performance of a solar still with a single basin
using stearic acid as PCM. The freshwater yield was noted to be 9.005 kg/m2day, while the efficiency
was recorded to be 85.3%. Kabeel and Abdelgaied [26] researched the performance and productivity
of a solar still with PCM. The percentage rise in the productivity of the still model was noted to be
67.18% greater than that of the conventional still, while the freshwater yield noted to be 7.54 L/m2day.
Kabeel et al. [27] analyzed the performance of a modified still coupled with a collector and PCM.
The distilled water yield was recorded to be 9.36 L/m2day, which was calculated to be 109% enhanced
when compared to that of the conventional still. Mousa and Gujarathi [28] studied the freshwater
productivity of stills using PCM and reported a yield of 2.1 L/day. Shalaby et al. [29] introduced
a novel v-corrugated absorber solar still with PCM, and a considerable rise in yield was reported.
Rufuss et al. [30] analyzed the performance of a solar still with Nano Phase Change Material (NPCM)
(TiO2, CuO and GO). When GO nanoparticles were used, the yield was noted to be 5.28 L/m2/day,
which was the highest when compared to the other nanoparticles. Arunkumar et al. [31] experimented
on the impact of air and water cooling systems on the productivity of the TSS. The air-cooled system
produced a yield of 2050 mL/day, while the water-cooled system yielded 5000 mL/day. Chen et al. [32]
investigated the efficiency and productivity of a three-effect TSS. At the optimal heating power of
300 W, the performance ratio reaches the value of 1.3, which is the highest. The recent literature on
passive [33–35] and active [36–38] solar stills was studied. From the referred works, it is noted that
only a few research studies were done using TSS with PCM. Several researchers have also made minor
modifications to the conventional model of TSS to enhance productivity. Different types of PCM
have been used in the past, but the yield production obtained was not commercially viable. The use
of graphene NPCM has helped in enhancing freshwater yield by a comparatively better amount.
The productivity, thermal and exergy efficiency were also better for the TSS-NPCM in comparison to
conventional models. The model with NPCM showed 81%, 87.02% and 124.55% increase in freshwater
production, thermal and exergy efficiency when compared to the efficiencies of the conventional
models because of the high thermal efficiency and heat absorption capacity of graphene. The maximum
yield obtained from the TSS-NPCM in the current study was noted to be 7.91 kg, which is higher
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than the conventional stills, and the stills using normal PCM. Hence, this work is mainly based on
the comparative study of the operational performances between the TSS with paraffin wax (PCM)
and TSS with graphene and paraffin wax (NPCM).

2. Design and Construction of the Tubular Solar Stills

The schematic and photo of the CTSS, TSS-PCM and TSS-NPCM are depicted in Figure 1. A CTSS
consists of a polymethylmethacrylate tube of dimensions 68 cm length and 18.5 cm outer diameter and a
basin in which the water is poured, and the desalination process is done. The measurements of the basin,
which is made from a 0.1 cm thick sheet metal, are 66 cm (Length) × 13 cm (Width) × 3 cm (Height).
In the TSS-PCM and TSS-NPCM models, there is a storage area in the sheet metal basin inside which
the PCM (paraffin wax) and NPCM (graphene and paraffin wax) are kept. Above this enclosed layer,
the water is poured. This combination of the TSS model along with NPCM (graphene) showed better
productivity and efficiency compared to the CTSS. The setups for all three models are assembled in a
stand, and thermocouple electrodes fitted to its elements and placed under sunlight on an elevated area.
The brackish water is poured in the basin for depths of 1 cm to observe the operational parameters.
Then the water evaporates and condenses on the inner face of the acrylic tube, which is collected
and stored in beakers using outlet tubes. J-type thermocouple with a range of 0 to 400 ◦C is used
to measure the temperatures [39]. Industrial grade yellow paraffin wax with a melting point of
55 ◦C is used as the PCM. Initially, for graphene preparation, 20 g of graphite and 20 g of sodium
chloride (NaCl) were mixed and pulverized, after which the filtration process was carried out using
de-ionized water. The wet graphene was dried and then mixed with molten paraffin wax (PCM)
to form the NPCM (Figure 2). Graphene conducts heat and electricity efficiently. Using these high
thermal conductivity nanoparticles can enhance productivity. The thermal conductivity of graphene
at room temperature is about 2000–4000 W·m−1K−1. This number is still among the highest of any
known material. In both computer simulations and experiments, the researchers found that the larger
the segments of graphene, the more heat it could transfer. Theoretically, graphene could absorb an
unlimited amount of heat. The melting point, density, thermal conductivity and specific heat capacity of
the graphene are 55 ◦C, 800 kg/m3, 2000 W·m−1

·K−1 and 2850 J/kg·K, respectively [30]. The uncertainty
associated with the instruments and the ranges is provided in Table 1.

Table 1. Uncertainty and range of instruments.

S. No. Equipment Make Uncertainty Range

1. Solar power meter TES-132 ±3.56% 0–2500 W/m2

2. Thermocouple J-Type ±1.57% 0–400 ◦C

3. Calibrated flask – ±1.58% 0–3000 mL
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3. Outcomes and Analyses

3.1. Hourly Changes in Various Parameters of the TSS Models

The changes in the solar irradiance, ambient temperature, basin temperature and brackish water
temperature during the experimental days are depicted in Figures 2 and 3. The solar intensity rose to
reach its maximum value until 1p.m., then it declined. The maximum solar radiation values were noted
to be 1060 and 1065 W/m2 on 27 May 2019 and 28 May 2019 in each instance. The average solar intensity
of 720 W/m2 was recorded on 27 May 2019, while on 28 May 2019, it was observed to be 713 W/m2.
On both experimental days, the highest ambient temperature was noted to be 42 ± 0.1 ◦C. The average
ambient temperature per day was recorded to be around 36 ± 0.1 ◦C. The basin temperature rose with
an increase in solar intensity to attain its maximum value until 1 p.m., then it declined. On 27 May 2019
and 28 May 2019, the highest basin temperatures for the CTSS were noted to be 57 ± 0.1 and 56 ± 0.1 ◦C
in each instance. For the TSS-PCM, the maximum basin temperatures were recorded to be 56 ± 0.1
and 55 ± 0.1 ◦C on the respective experimental days. On 27 May 2019 and 28 May 2019, the highest
basin temperatures for the TSS-NPCM were observed to be 58 ± 0.1 ◦C on both days. The average
basin temperature per day was noted to be 44 ± 0.1, 45 ± 0.1 and 48 ± 0.1 ◦C for the CTSS, TSS-PCM
and TSS-NPCM in each instance. Similar to the basin temperature, the brackish water temperature
also increased to attain its maximum value until 1 p.m., after which it declined. On 27 May 2019
and 28 May 2019, the highest water temperatures for the CTSS were noted to be 61 ± 0.1 and60 ± 0.1 ◦C
in each instance. For the TSS-PCM, the maximum brackish water temperatures were recorded to be
60 ± 0.1 and 59 ± 0.1 ◦C on the respective experimental days. On 27 May 2019 and 28 May 2019,
the highest water temperatures for the TSS-NPCM were observed to be 61 ± 0.1 ◦C on both days.
The average water temperature per day was noted to be 48 ± 0.1, 49 ± 0.1 and 50 ± 0.1 ◦C for the CTSS,
TSS-PCM and TSS-NPCM in each instance. It was observed that TSS-NPCM has the highest basin
and water temperature. The NPCM showed the highest thermal conductivity because graphene has
excellent heat absorption capacity in comparison to other materials.
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3.2. Hourly Changes of Evaporative Heat Transfer Coefficient (EHTC) and Productivity of the TSS Models

The changes in EHTC and the potable water productivity of the CTSS, TSS-PCM and TSS-NPCM
are depicted in Figures 4 and 5. In general, the TSS-NPCM shows the highest EHTC value on both
the experimental days at 2 p.m. On 27 May 2019 and 28 May 2019, the highest EHTC values for
the CTSS were noted to be 73 and 72 W/m2K in each instance. For the TSS-PCM, the maximum EHTC
values were recorded to be 74 K and 71 W/m2K on the respective experimental days. On 27 May 2019
and 28 May 2019, the highest EHTC values for the TSS-NPCM were observed to be 81 W/m2K on both
days. The average EHTC value per day was noted to be 43, 47 and 50 W/m2K for the CTSS, TSS-PCM
and TSS-NPCM in each instance.Energies 2020, 13, x FOR PEER REVIEW 7 of 13 
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The EHTC from brackish water to tubular cover is calculated by Equation (1) [40]

he,w−g = 16.273× 10−3xhc,w−g

[Pw − Pgi

Tw − Tgi

]
(1)
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Convective heat transfer coefficient (hc) from brackish water to tubular cover is calculated by
Equation (2) [40]

hc,w−g = 0.884

(Tw − Tgi
)
+

(
Pw − Pgi

)
(Tw + 273)

(268.9× 10−3 − Pw)

 (2)

where Pw and Pgi denote the partial vapor pressure of water and inner glass, while Tw and Tgi denote
the water temperature and inner glass temperature, respectively.

Partial vapor pressure at the brackish water temperature is calculated by Equation (3) [40],

Pw = exp
(
25.317−

( 5144
273 + Tw

))
(3)

Partial vapor pressure at the inner tubular cover is calculated by Equation (4) [40],

Pgi = exp
(
25.317−

(
5144

273 + Tgi

))
(4)

The presence of NPCM in the TSS has helped in enhancing the maximum hourly yield of freshwater.
The highest amount of pure water produced per hour was obtained at 2 p.m. on both the experimental
days from the TSS-NPCM. On 27 May 2019 and 28 May 2019, the highest yield from the CTSS was
noted to be 0.74 and 0.80 kg in each instance at 2 p.m. For the TSS-PCM, the maximum yield was
recorded to be 1.03 and 1.00 kg on the respective experimental days. On 27 May 2019 and 28 May 2019,
the highest yield from the TSS-NPCM was observed to be 1.32 and 1.43 kg in each instance at 2 p.m.
The total yield per day was noted to be 4.3, 6.0 and 7.9 kg from the CTSS, TSS-PCM and TSS-NPCM
in each instance. The high thermal conductivity of the NPCM helped in raising the temperature of
the water, in turn contributing to the enhancement in the distillate yield. During the day, the NPCM
absorbed high amounts of heat, which it stored and slowly released during the off shine hours, which
helps in the heating and evaporation of water to produce the highest yield.

3.3. Hourly Changes in the PCM and NPCM Temperatures in the TSS Models

The changes in the PCM and NPCM temperature in the TSS-PCM and TSS-NPCM, as well as
improvement in temperature of NPCM are depicted in Figure 6. The NPCM shows greater temperature
than the PCM because of the high thermal conductivity of graphene. The highest temperature on both
the experimental days was obtained at 1 p.m. On 27 May 2019 and 28 May 2019, the highest PCM
temperatures were noted to be 51 ± 0.1 and 50 ± 0.1 ◦C in each instance. For the NPCM, the maximum
temperatures were recorded to be 57 ± 0.1 and 56 ± 0.1 ◦C on the respective experimental days.
The average PCM and NPCM temperatures per day were noted to be 41 ± 0.1 and 48 ± 0.1 ◦C in
each instance. The NPCM showed about a 17.1% rise in temperature when compared to the PCM.
The excellent heat absorption capacity during the on shine hours, and the ability to release the heat
slowly during the off shine hours, has helped the TSS-NPCM perform better than the CTSS and TSS-PCM
in all aspects.

3.4. Hourly Changes in the Thermal Efficiency of the TSS Models

The changes in the thermal efficiency of the CTSS, TSS-PCM and TSS-NPCM are depicted in
Figure 7. The energy efficiency of the NPCM is higher than that of the PCM because of its high thermal
properties. On 27 May 2019 and 28 May 2019, the highest thermal efficiency of the CTSS was noted
to be 55% and 47% at 2 p.m. in each instance. For the TSS-PCM, the maximum thermal efficiency
was recorded to be 110% and 198% on the respective experimental days at 7 p.m. On 27 May 2019
and 28 May 2019, the highest thermal efficiency of the TSS-NPCM was observed to be 170% and 268%
at 7p.m. The average thermal efficiency per day was noted to be 31%, 46% and 59% for the CTSS,
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TSS-PCM and TSS-NPCM in each instance. The NPCM shows the highest thermal efficiency because
graphene has excellent heat absorption capacity in comparison to other materials.Energies 2020, 13, x FOR PEER REVIEW 8 of 13 
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The energy efficiency of the TSS is calculated by Equation (5) [40],

ηp.th =
mew × h f g

IS(t) ×As × 3600
× 100% (5)

mew being the mass flow rate of water, hfg the latent heat of vaporization, As the still area and Is

the solar irradiance received.

3.5. Hourly Changes in the Exergy Efficiency of the TSS Models

The changes in the exergy efficiency of the CTSS, TSS-PCM and TSS-NPCM are depicted in
Figure 8. On 27 May 2019 and 28 May 2019, the highest exergy efficiency of the CTSS was noted to
be 3.07% and 2.91% at 1 p.m. in each instance. For the TSS-PCM, the maximum exergy efficiency
was recorded to be 6.07% and 5.38% on the respective experimental days at 7 p.m. On 27 May 2019
and 28 May 2019, the highest exergy efficiency of the TSS-NPCM was calculated to be 8.58% and 12.16%
at 7 p.m. The average exergy efficiency per day was noted to be 1.67%, 2.20% and 3.75% for the CTSS,
TSS-PCM and TSS-NPCM in each instance. The TSS-PCM and the TSS-NPCM showed 24.1% and 55.4%
enhancement in exergy effectiveness in each instance when compared to the CTSS setup. The higher
heat absorption capacity of the graphene in the NPCM helped in better productivity and efficiency.



Energies 2020, 13, 3989 9 of 13

Energies 2020, 13, x FOR PEER REVIEW 9 of 13 

 

be 3.07% and 2.91% at 1 p.m. in each instance. For the TSS-PCM, the maximum exergy efficiency was 

recorded to be 6.07% and 5.38% on the respective experimental days at 7 p.m. On 27 May, 2019 and 

28 May, 2019, the highest exergy efficiency of the TSS-NPCM was calculated to be 8.58% and 12.16% 

at 7 p.m. The average exergy efficiency per day was noted to be 1.67%, 2.20% and 3.75% for the 

CTSS, TSS-PCM and TSS-NPCM in each instance. The TSS-PCM and the TSS-NPCM showed 24.1% 

and 55.4% enhancement in exergy effectiveness in each instance when compared to the CTSS setup. 

The higher heat absorption capacity of the graphene in the NPCM helped in better productivity and 

efficiency. 

The exergy efficiency of the TSS is calculated by Equation (6) [41], 

𝜂𝑝.𝑒 =
𝑒𝑝.𝑜𝑢𝑡

𝑒𝑝.𝑖𝑛

 (6) 

where ep.out is the output exergy and ep.in is the input exergy. 

Exergy output of a TSS is calculated by Equation (7) [41], 

𝑒𝑝.𝑜𝑢𝑡 = (𝑚𝑑𝑥ℎ𝑓𝑔) (1 − [
𝑇𝑎 + 273

𝑇𝑤 + 273
]) (7) 

md being the hourly yield, hfg the latent heat of vaporization, Ta the air temperature, and Tw the water 

temperature. 

Exergy input of a TSS is calculated by Equation (8) [41], 

𝑒𝑝.𝑖𝑛 = (𝐴𝑥𝐼𝑡) [1 + (
1

3
[
𝑇𝑎 + 273

6000
]

4

−
4

3
[
𝑇𝑎 + 273

6000
])] (8) 

where A is the area of the solar still, It is the solar irradiance received and Ta is the air temperature. 

 

Figure 8. Hourly variations of exergy efficiency. 

Table 2 summarizes the yield, energy and exergy efficiency of the CTSS, TSS-PCM and 

TSS-NPCM, and it also summarizes the percentage increase in yield, energy efficiency and exergy 

efficiency of the TSS-PCM and TSS-NPCM compared to the CTSS. 

Table 2. Percentage increase in yield, energy and exergy efficiency of the Tubular Solar Still(TSS). 

S.no 

Date Type of Solar 

Still  

Yield (kg) Energy Efficiency 

(%) 

Exergy Efficiency 

(%) 

Actual % 

Increase 

Actual % 

Increase 

Actual % 

Increase 

Figure 8. Hourly variations of exergy efficiency.

The exergy efficiency of the TSS is calculated by Equation (6) [41],

ηp.e =
ep.out

ep.in
(6)

where ep.out is the output exergy and ep.in is the input exergy.
Exergy output of a TSS is calculated by Equation (7) [41],

ep.out =
(
mdxh f g

)(
1−

[ Ta + 273
Tw + 273

])
(7)

md being the hourly yield, hfg the latent heat of vaporization, Ta the air temperature, and Tw

the water temperature.
Exergy input of a TSS is calculated by Equation (8) [41],

ep.in = (AxIt)

[
1 +

(
1
3

[Ta + 273
6000

]4
−

4
3

[Ta + 273
6000

])]
(8)

where A is the area of the solar still, It is the solar irradiance received and Ta is the air temperature.
Table 2 summarizes the yield, energy and exergy efficiency of the CTSS, TSS-PCM and TSS-NPCM,

and it also summarizes the percentage increase in yield, energy efficiency and exergy efficiency of
the TSS-PCM and TSS-NPCM compared to the CTSS.

Table 2. Percentage increase in yield, energy and exergy efficiency of the Tubular Solar Still(TSS).

S.no Date Type of Solar Still
Yield (kg) Energy Efficiency (%) Exergy Efficiency (%)

Actual % Increase Actual % Increase Actual % Increase

1 27.05.2019

CTSS 4.37 Ref 31.53 Ref 1.67 Ref

TSS-PCM 6.07 38.90 46.11 46.20 2.20 31.73

TSS-NPCM 7.91 81.00 58.97 87.02 3.75 124.55

2 28.05.2019

CTSS 4.14 Ref 29.12 Ref 1.55 Ref

TSS-PCM 5.89 42.27 45.13 54.97 1.95 25.80

TSS-NPCM 7.51 81.40 56.10 92.65 3.48 124.51

Table 2 shows that the yield produced from the TSS-PCM was 38.9% to 42.3% higher compared
to the CTSS, and the yield produced from the TSS-NPCM was 81% higher compared to the CTSS.
Table 3 provides the relative studies between the productivity of various stills with PCM. It is identified
in Table 3 that the maximum yield of 9.36 L/m2day was obtained by Kabeel et al. [27] in the analysis of
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solar still with hot air injection and the use of PCM. In the present research, PCM produces a yield of
6.07 kg, and NPCM produces a yield of 7.9 kg.

Table 3. Relative studies between the productivity of various stills with PCM.

S. No Author Name Experimental Work Done Yield (kg/m2)
% Improvement in Yield

Compared to
the Conventional Models

1 Al-Hamadani and Shukla [22] Study of solar distillation
system with PCM 1480 mL/m2h -

2 Ansari et al. [23]
Desalination with solar still
incorporated with energy

storage system.
_ -

3 Asbik et al. [24] Solar still combined with
PCM _ -

4 El-Sebaii et al. [25] Thermal performance of
single basin still with PCM 9.005 kg/m2day 85.3

5 Kabeel and Abdelgaied [26] Performance analysis of
solar still using PCM 7.54 L/m2day 67.18

6 Kabeel et al. [27]
Analysis of modified solar
still with hot air injection

and PCM
9.36 L/m2day 108

7 Mousaand Gujarathi [28]
Productivity analysis of
solar desalination units

using PCM
2.1 L/day 49

8 Shalaby et al. [29] V-corrugated absorber single
basin solar still using PCM 0.558 kg/m2h 12

9 Rufuss et al. [30] Productivity analysis of
solar still with NPCM 5.28 L/m2/day 43.2

10 Thalib et al. (present study) Operational performances of
TSS with PCM 6 kg/day 38.9

11 Thalib et al. (present study) Operational performances of
TSS with NPCM 7.9 kg/day 81

4. Conclusions

The following results have been reported from the above study:

1. The presence of PCM and NPCM increased both the basin and brackish water temperature
considerably. Average basin temperature per day for the CTSS, TSS-PCM and TSS-NPCM were
recorded to be 44 ± 0.1, 45 ± 0.1 and 47 ± 0.1 ◦C, while the average water temperatures in a day
for the models were noted to be 47 ± 0.1, 49 ± 0.1 and 50 ± 0.1 ◦C.

2. The productivity of TSS-NPCM was recorded to be the highest. The total yield per day was noted
to be 4.37, 6.07 and 7.91 kg from the CTSS, TSS-PCMand TSS-NPCM in each instance.

3. Due to the high thermal conductivity of graphene, the NPCM shows about a 17.1% rise in
temperature when compared to PCM (paraffin wax).

4. The thermal efficiency of the NPCM is higher than that of the PCM because of its high thermal
properties. The highest thermal efficiencies of the CTSS, TSS-PCM and TSS-NPCM were noted to
be 55%, 198%, and 268%, respectively.

5. The highest exergy efficiencies of the CTSS, TSS-PCM and TSS-NPCM were noted to be 1.67%,
2.2% and 3.75%, respectively.
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Abbreviations

Abbreviations
CTSS Conventional Tubular Solar Still
TSS Tubular Solar Still
PCM Phase Change Material
NPCM Nano Phase Change Material
PC Parabolic Concentrator
CPC Concentric Parabolic Concentrator
EHTC Evaporative Heat Transfer Coefficient
Nomenclature
A Area (m2)
h Heat transfer coefficient (W/m2K)
I(t) Solar intensity (W/m2)
M Hourly productivity from Solar Still (kg/m2 h)
P Partial vapor pressure (N/m2)
T Temperature (◦C)
η efficiency (%)
Subscript
a Ambient
c Convective
d Daily
e Evaporative
g Glass
gi inner glass
pv Photovoltaic
s Surface area of condensing cover
th Thermal
w Water
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